基于多智能体仿真的舰船动力系统航渡任务成功性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on mission success-probability of ship propulsion system based on multi-agent simulation
  • 作者:吕建伟 ; 郭顺合 ; 徐一帆 ; 杨皓洁
  • 英文作者:LYU Jianwei;GUO Shunhe;XU Yifan;YANG Haojie;Department of Management Engineering and Equipment Economics,Naval University of Engineering;
  • 关键词:舰船 ; 动力系统 ; 航渡 ; 任务成功性 ; 多智能体 ; 仿真
  • 英文关键词:navy vessel;;propulsion system;;sail;;mission success;;multi-agent;;simulation
  • 中文刊名:XTYD
  • 英文刊名:Systems Engineering and Electronics
  • 机构:海军工程大学管理工程与装备经济系;
  • 出版日期:2019-06-06 09:37
  • 出版单位:系统工程与电子技术
  • 年:2019
  • 期:v.41;No.479
  • 基金:国家自然科学基金(71401171);; 军委装备发展部装备预研领域基金;; 军队院校2110III期基金项目资助课题
  • 语种:中文;
  • 页:XTYD201908030
  • 页数:7
  • CN:08
  • ISSN:11-2422/TN
  • 分类号:225-231
摘要
通过对舰船航渡任务过程的分析,得到了动力系统航渡阶段任务成功性的定义、判断准则和可靠性框图,建立了系统加权邻接矩阵;根据对设备故障类型的分析,得出了不同性质的设备故障对舰船航行的影响,建立了舰船动力系统航渡任务成功性的判断模型;结合典型示例,运用多智能体的方法和思路对动力系统航渡过程和设备故障情况进行了仿真,得到了任务成功率以及相关结论。为开展舰上其他系统对应研究提供了借鉴和依据,并为全舰以及编队的任务成功性和效能研究、故障维修中的备品备件需求等打下了基础。
        The definition,judgment criterion and reliability block diagram of the propulsion system during the sail phase are presented.The system weighted adjacency matrix is established by analyzing the navy vessel sailing mission process.Based on the analysis of the equipment failure types,the influence of different types of equipment failure during sailing is obtained.The judgment model of the propulsion system mission success is established.Combined with typical examples,the multi-agent method and thought are used to simulate the propulsion system sailing process and the equipment failure,and the success probability and related conclusions are obtained.It provides reference and basis for the corresponding research of other systems onboard,and lays the foundation for the mission success and effectiveness analysis of a ship and a fleet,and spare parts requirements in failure repair.
引文
[1]WU X Y,HILLSTON J.Mission reliability of semi-Markov systems under generalized operational time requirements[J].Reliability Engineering and System Safety,2015,140(8):122-129.
    [2]LI Y,CUI L R,LIN C.Modeling and analysis for multi-state systems with discrete-time Markov regime switching[J].Reliability Engineering and System Safety,2017,166(10):41-49.
    [3]LEVITIN G,XING L D,LUO L.Influence of failure propagation on mission abort policy in heterogeneous warm standby systems[J].Reliability Engineering and System Safety,2019,183(3):29-38.
    [4]LEVITIN G,FINKELSTEIN M,DAI S Y.Redundancy optimization for series-parallel phased mission systems exposed to random shocks[J].Reliability Engineering and System Safety,2017,167(11):554-560.
    [5]LU J M,WU X Y.Reliability evaluation of generalized-mission systems with repairable components[J].Reliability Engineering and System Safety,2014,121(1):136-145.
    [6]ERYILMAZ S.Dynamic assessment of multi-state systems using phase-type modeling[J].Reliability Engineering and System Safety,2015,140(8):71-77.
    [7]GEORAGE-WILLAMS H,PATELLI E.A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation[J].Reliability Engineering and System Safety,2016,152(8):351-367.
    [8]韩小孩,张耀辉,王少华,等.考虑维修工作的装备任务成功性评估方法[J].系统工程与电子技术,2017,39(3):687-692.HAN X H,ZHANG Y H,WANG S H,et al.Evaluation of equipment’s dependability taking maintenance into consideration[J].Journal of Systems Engineering and Electronics,2017,39(3):687-692.
    [9]XING L D,LEVITIN G.BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures[J].Reliability Engineering&System Safety,2013,112(4):145-153.
    [10]ZHAO J B,HOU P Y,CAI,Z Q.Research of mission success importance for a multi-state repairable k-out-of-n system[J].Advances in Mechanical Engineering,2018,10(2):1-16.
    [11]MO Y C,XING L D,AMARI S V,et al.Efficient analysis of multi-state k-out-of-nsystems[J].Reliability Engineering and System Safety,2015,133(1):95-105.
    [12]WU X Y,Wu X Y,BALAKRISHNAN N.Variance-based importance analysis measure for mission reliability of phased mission system[J].Journal of Statistical Computer and Simulation,2018,88(5):841-868.
    [13]陈砚桥,金家善,黄政.基于蒙特卡罗方法的舰船装备系统任务成功概率模型[J].船海工程,2012,41(1):103-106.CHEN Y Q,JIN J S,HUANG Z.A mission completion success probability model for equipment system of warship based on Monte-Carlo method[J].Ship&Ocean Engineering,2012,41(1):103-106.
    [14]杨晶,黎放,狄鹏.采用任务剖面的复杂可修系统保障性仿真与评价技术研究[J].西安交通大学学报,2011,45(4):54-59.YANG J,LI F,DI P.Research on simulation and evaluation for supportability of complex repairable systems with mission sections[J].Journal of Xi’an Jiaotong University,2011,45(4):54-59.
    [15]WU X,WU X Y.Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures[J].Reliability Engineering and System Safety,2015,136(4):109-119.
    [16]LIANG X F,WANG H D,LI H,et al.Warship reliability evaluation based on dynamic Bayesian networks and numerical simulation[J].Ocean Engineering,2017,136(15):129-140.
    [17]WHALLEY R,ABDUL-AMEER A.Warship propulsion system control[J].Journal of Mechanical Engineering Science,2012,226(10):2402-2421.
    [18]MIZYTHRAS P,BOULOUGOURIS E,THEOTOKATOS G.Numerical study of propulsion system performance during ship acceleration[J].Ocean Engineering,2018,149(1):383-396.
    [19]THEOTOKATOS,G,TZELEPIS V.A computational study on the performance and emission parameters mapping of a ship propulsion system[J].Proceedings of the Institution of Mechanical Engineer Part M-Journal of Engineering for the Maritime Environment,2015,229(1):58-76.
    [20]JURJEVIC M,JURJEVIC N,KOBOEVIC N.Modeling of dynamic reliability stages of a ship propulsion system with safety and exhaust emission[J].Tehnicki Vjesnik-Technical Gazette,2012,19(1):159-165.
    [21]吕建伟,余鹏,杨建军.舰船航渡过程中的松弛时间与航渡策略问题研究[J].海军工程大学学报,2012,24(2):25-28.LYU J W,YU P,YANG J J.Relaxation time and sailing strategy of naval vessel in voyage[J].Journal of Naval University of Engineering,2012,24(2):25-28.
    [22]TIAN Y F,LIU H,LUO M Q,et al.Non-uniform hybrid strategy for architecting and modeling flight vehicle focused system-of-systems operations[J].Chinese Journal of Aeronautics,2016,29(1):160-172.
    [23]WAGENER N,AGRAWAL V.An agent-based simulation system for concert venue crowd evacuation modeling in the presence of a fire disaster[J].Expert System Application,2014,41(6):2807-2815.
    [24]MACAL C M,NORTH M J.Tutorial on agent-based modeling and simulation[J].Journal of Simulation,2010,4(3):151-162.
    [25]LI,G F BIE Z H,KOU Y,et al.Reliability evaluation of integrated energy systems based on smart agent[J].Applied Energy,2016,167(4):397-406.
    [26]郭智杰,糜玉林,王建国.基于Agent的要地防空作战仿真研究[J].计算机与数学工程,2016,44(11):2174-2178.GUO Z J,MI Y L,WANG J G.Point air defense combat simulation based on agent[J].Computer&Digital Engineering,2016,44(11):2174-2178.
    [27]冯翔,张进文.行为建模及其在多Agent系统中的应用[J].计算机科学,2015,42(9):214-219.FENG X,ZHANG J W.Behavior modeling and its application in multi-agent system[J].Computer Science,2015,42(9):214-219.
    [28]裴国旭,杜晓明,薛昭,等.多智能体系统在军事仿真领域的应用现状[J].飞航导弹,2017(2):46-49.PEI G X,DU X M,XUE Z,et al.Application of multi-agent system in military simulation[J].Winged Missiles Journal,2017(2):46-49.
    [29]ORMROD D,TURNBULL B.Attrition rate and maneuver in agent-based simulation models[J].The Journal of Defense Modeling and Simulation,2017,14(3):257-272.
    [30]谢宗仁.基于影响因子的舰船总体效能优化研究[D].武汉:海军工程大学,2014.XIE Z R.The optimization research on the ship’s effectiveness based on influence factors[D].Wuhan:Naval University of Engineering,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700