电动汽车电机控制器IGBT结温计算方与验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation method of IGBT junction temperature for electric vehicle motor inverter and its verification
  • 作者:王淑旺 ; 路玲 ; 赖剑斌
  • 英文作者:WANG Shuwang;LU Ling;LAI Jianbin;School of Mechanical Engineering, Hefei University of Technology;
  • 关键词:热阻计算 ; IGBT结温 ; 仿真分析 ; 试验测试
  • 英文关键词:thermal resistance calculation;;insulated gate bipolar transistor(IGBT) junction temperature;;simulation analysis;;experiment
  • 中文刊名:HEFE
  • 英文刊名:Journal of Hefei University of Technology(Natural Science)
  • 机构:合肥工业大学机械工程学院;
  • 出版日期:2019-03-28
  • 出版单位:合肥工业大学学报(自然科学版)
  • 年:2019
  • 期:v.42;No.311
  • 基金:安徽省科技攻关重大资助项目(1501021004)
  • 语种:中文;
  • 页:HEFE201903011
  • 页数:6
  • CN:03
  • ISSN:34-1083/N
  • 分类号:88-93
摘要
电动汽车电机控制器中的主要热源是绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)模块,其最大结温的高低是影响控制器可靠性的关键因素。为保证IGBT模块最大结温始终在其允许工作温度范围内,采用水冷方式对其进行散热。文章以某款纯电动汽车电机控制器为研究对象,结合传热学基本原理,提出了一种水冷散热器热阻估算方,并用该方得到的热阻值直接对IGBT模块结温进行计算;为验证计算方的有效性,利用数值模拟的方对水冷散热器内部流场以及IGBT结温进行仿真分析,同时进行试验测试,并将得到的3组结果进行对比。结果表明,该文提出的计算方可以准确地得到IGBT在不同工况点的结温。
        Insulated gate bipolar transistor(IGBT) module is the main heat source of the electric vehicle motor inverter, and its maximum junction temperature is the key factor that affects the reliability of the inverter. To ensure that the maximum junction temperature of the IGBT module is always within its allowable operating temperature range, it is cooled by the water cooling system. Taking an electric vehicle motor inverter as research object, combined with the basic principle of heat transfer theory, a method for estimating water cooling radiator thermal resistance is put forward, and then the IGBT junction temperature is calculated directly from the thermal resistance. In order to verify the validity of the method, the numerical simulation method is used to simulate the flow field of water cooling radiator and the IGBT junction temperature, and the experiment is also carried out. By comparing the results, it is concluded that the junction temperature of IGBT at different operating conditions can be calculated accurately by this method.
引文
[1] 魏克新,杜明星.基于集总参数的IGBT模块温度预测模型[J].电工技术学报,2011,26(12):79-84.
    [2] RODRIGUEZ J,PARRILLA Z, VELEZ-REYES M,et al.Thermal component models for electro thermal analysis of multichip power modules[C]//Industry Applications Conference.[S.l.]: IEEE,2002:234-241.
    [3] WU Y B,LIU G Y,XU N H,et al.Thermal resistance analysis and simulation of IGBT module with high power density[J].Applied Mechanics and Materials,2013,303/304/305/306: 1902-1907.
    [4] LIU C K,ChAO Y L,YANG S J,et al.Direct liquid cooling for IGBT power module[C]//Microsystems,Packaging,Assembly and Circuits Technology Conference.[S.l.]: IEEE,2014:41-44.
    [5] DU X,LI T F,ZhANG J,et al.Thermal network parameter identification of IGBT module based on the cooling curve of junction temperature[C]//Applied Power Electronics Conference and Exposition.[S.l.]: IEEE,2016:2992-2997.
    [6] ZHONG Y L,MENG J L,NING P Q,et al.Design & analysis of a novel IGBT package with double-sided cooling[C]//Transportation Electrification Asia-Pacific.[S.l.]: IEEE,2014:1-6.
    [7] HAN C W,JEONG S B,OH M D.Thermo-fluid simulation for the thermal design of the IGBT module in the power conversion system [J].Microelectronics Reliability,2016,59:64-72.
    [8] 丁杰,唐玉兔.翅柱式IGBT水冷散热器的数值模拟[J].机床与液压,2014,42(16):63-66,85.
    [9] 揭贵生,孙驰,汪光森,等.大容量电力电子装置中板式水冷散热器的优化设计[J].机械工程学报,2010,46(2):99-105.
    [10] 王淑旺,胡俊明,赵卫键,等.一种IGBT接触热阻的估算方[J].微特电机,2014,42(3):42-44.
    [11] 江超,唐志国,李荟卿,等.电机控制器IGBT用风冷散热器设计 [J].汽车工程学报,2015,5(3):179-186.
    [12] 王晓元,王雄,王幸智,等.大功率模块用水冷散热器的数值模拟与试验研究[J].大功率变流技术,2015(2):47-51.
    [13] 胡建辉,李锦庚,邹继斌,等.变频器中的IGBT模块损耗计算及散热系统设计[J].电工技术学报,2009,24(3):159-163.
    [14] 白保东,陈德志,王鑫博.逆变器IGBT损耗计算及冷却装置设计[J].电工技术学报,2013,28(8):97-106.
    [15] 汪波,罗毅飞,张烁,等.IGBT极限功耗与热失效机理分析[J].电工技术学报,2016,31(12):135-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700