钝头弹高速斜侵彻中厚背水金属靶板的机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MECHANISMS OF MODERATELY THICK WATER-BACKED METAL PLATES OBLIQUELY PENETRATED BY HIGH-VELOCITY BLUNT-NOSED PROJECTILES
  • 作者:陈长海 ; 侯海量 ; 张元豪 ; 朱锡 ; 李典
  • 英文作者:CHEN Chang-hai;HOU Hai-liang;ZHANG Yuan-hao;ZHU Xi;LI Dian;Department of Naval Architecture Engineering, Naval University of Engineering;
  • 关键词:穿甲力学 ; 高速钝头弹 ; 斜侵彻 ; 背水靶板 ; 瞬时余速
  • 英文关键词:perforation mechanics;;high-velocity blunt-nosed projectile;;oblique penetration;;water-backed target;;instantaneous residual velocity
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:海军工程大学舰船工程系;
  • 出版日期:2017-11-25
  • 出版单位:工程力学
  • 年:2017
  • 期:v.34
  • 基金:国家自然科学基金项目(51409253,51479204)
  • 语种:中文;
  • 页:GCLX201711029
  • 页数:9
  • CN:11
  • ISSN:11-2595/O3
  • 分类号:245-253
摘要
为探讨高速钝头弹斜侵彻中厚背水金属靶板的机理,根据不同的受力状态及耗能机制,结合中厚背水靶板抗高速斜侵彻特点,通过厚度等效,将斜侵彻转化为相应的正侵彻。然后,将整个侵彻过程分为压缩镦粗、剪切压缩和剪切扰动三个阶段。基于三阶段侵彻机制,建立了钝头弹高速斜穿甲中厚背水金属靶板后的瞬时余速计算模型,并讨论了该计算模型的局限性。采用该模型计算了3.3 g立方体弹丸斜穿甲5 mm背水钢板后的瞬时余速,理论计算值与试验结果及相应的仿真计算值均吻合较好。由于该模型考虑了靶后水介质的动支撑作用及动能耗散等效应,在一定的适用范围内,能对钝头弹高速斜侵彻中厚背水金属靶板的瞬时余速进行合理地预测,具有一定的理论价值和工程应用价值。
        To explore the mechanisms of moderately thick water-backed metal plates obliquely penetrated by high-velocity blunt-nosed projectiles, the oblique penetration was converted to corresponding perpendicular penetration through thickness equivalence. The conversion was conducted according to different mechanical states and energy-dissipative mechanisms during the oblique penetrating process together with the high-velocity oblique penetration-resistant characteristics of moderately thick water-backed metal plates. Then, the whole process was divided into three consecutive phases, i.e., the compression & mushrooming phase, shearing & compression phase and shearing & intruding phase. Based on the three-phase penetration mechanism, an analytical model was established to calculate instantaneous residual velocities of the blunt-nosed projectiles obliquely perforating moderately thick water-backed metal plates. Moreover, the limitations of the present model were discussed. By adopting the present model, the instantaneous residual velocities of 3.3 g cubic projectiles obliquely penetrating 5 mm-thick water-backed steel plates have been calculated. Good levels of agreement were obtained between the theoretical values and experimental results as well as corresponding numerical results. Considering several phenomena, such as the dynamic supporting action and kinetic energy dissipation effort of the water medium behind the target, the three-phase model can be employed to reasonably predict, in the valid regime, the instantaneous residual velocities of the blunt-nosed projectiles obliquely perforating moderately thick water-backed metal plates, and therefore, has theoretical and engineering application values.
引文
[1]Mc Millen J H.Shock wave pressures in water produced by impact of small spheres[J].Physical Review,1945,68(9/10):198―209.
    [2]Mc Millen J H,Harvey EN.A spark shadowgraphic study of body waves in water[J].Journal of Applied Physics,1946,17(7):541―555.
    [3]Townsend D,Park N,Devall P M.Failure of fluid filled structures due to high velocity fragment impact[J].International Journal of Impact Engineering,2003,29(1):723―733.
    [4]Disimile P J,Swanson L A,Toy N.The hydrodynamic ram pressure generated by spherical projectiles[J].International Journal of Impact Engineering,2009,36(6):821―829.
    [5]Disimile P J,Davis J,Toy N.Mitigation of shock waves within a liquid filled tank[J].International Journal of Impact Engineering,2011,38(2/3):61―72.
    [6]Varas D,Lopez-Puente J,Zaera R.Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J].International Journal of Impact Engineering,2009,36(1):81―91.
    [7]Varas D,Zaera R,López-Puente J.Numerical modelling of the hydrodynamic ram phenomenon[J].International Journal of Impact Engineering,2009,36(3):363―374.
    [8]Varas D,Zaera R,López-Puente J.Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J].Aerospace Science and Technology,2012,16(1):19―28.
    [9]Deletombe E,Fabis J,Dupas J,et al.Experimental analysis of 7.62 mm hydrodynamic ram in containers[J].Journal of Fluids and Structures,2013,37(2):1―21.
    [10]Kristoffersen M,Casadei F,B?rvik T,et al.Impact against empty and water-filled X65 steel pipesexperiments and simulations[J].International Journal of Impact Engineering,2014,71(9):73―88.
    [11]沈晓乐,朱锡,侯海量,陈长海.高速破片侵彻防护液舱试验研究[J].中国舰船研究,2011,6(3):12―15.Shen Xiaole,Zhu Xi,Hou Hailiang,Chen Changhai.Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J].Chinese Journal of Ship Research,2011,6(3):12―15.(in Chinese)
    [12]李营,吴卫国,郑元洲,等.舰船防护液舱吸收爆炸破片的机理[J].中国造船,2015,56(2):38―44.Li Ying,Wu Weiguo,Zheng Yuanzhou,et al.Study on mechanism of explosive fragments absorbed by vessel protective tank[J].Shipbuilding of China,2015,56(2):38―44.(in Chinese)
    [13]徐双喜,吴卫国,李晓彬,等.舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J].爆炸与冲击,2010,30(4):395―400.Xu Shuangxi,Wu Weiguo,Li Xiaobin,et al.Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J].Explosion and Shock Waves,2010,30(4):395―400.(in Chinese)
    [14]孔祥韶,吴卫国,刘芳,等.舰船舷侧防护液舱对爆炸破片的防御作用研究[J].船舶力学,2014,18(8):996―1004.Kong Xiangshao,Wu Weiguo,Liu Fang,et al.Research on protective effect of guarding fluid cabin under attacking by explosion fragments[J].Journal of Ship Mechanics,2014,18(8):996―1004.(in Chinese)
    [15]唐廷,朱锡,侯海量,等.高速破片在防雷舱结构中引起的冲击荷载的理论研究[J].振动与冲击,2013,32(6):132―136,148.Tang Ting,Zhu Xi,Hou Hailiang,et al.Shock loading induced by high speed fragment in cabin near shipboard[J].Journal of Vibration and Shock,2013,32(6):132―136,148.(in Chinese)
    [16]Khabakhpasheva T I,Korobkin A A,Malenica S.Fluid impact onto a corrugated panel with trapped gas cavity[J].Appl Ocean Res,2013,39(1):97―112.
    [17]孔祥韶,吴卫国,李俊,等.爆炸破片对防护液舱的穿透效应[J].爆炸与冲击,2013,33(5):471―478.Kong Xiangshao,Wu Weiguo,Li Jun,et al.Effects of explosion fragments penetrating defensive liquid-filled cabins[J].Explosion and Shock Waves,2013,33(5):471―478.(in Chinese)
    [18]李典,朱锡,侯海量,等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击,2016,36(1):1―8.Li Dian,Zhu Xi,Hou Hailiang,et al.Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J].Explosion and Shock Waves,2016,36(1):1―8.(in Chinese)
    [19]王晓强,朱锡.舰船用钢的抗弹道冲击性能研究进展[J].中国造船,2010,51(1):227―236.Wang Xiaoqiang,Zhu Xi.Review on ballistic impact resistance of ship building steel[J].Shipbuilding of China,2010,51(1):227―236.(in Chinese)
    [20]钱伟长.穿甲力学[M].北京:国防工业出版社,1984:81―86.Qian Weichang.Perforation mechanics[M].Beijing:National Defense Industry Press,1984:81―86.(in Chinese)
    [21]Recht R F,Ipson T W.Ballistic perforation dynamics[J].Journal of Applied Mechanics,ASME,1963,30(3):384―390.
    [22]Gupta N K,Madhu V.An experimental study of normal and oblique impact of hard-core projectile on single and layered plates[J].International Journal of Impact Engineering,1997,19(5/6):395―414.
    [23]张晓晴,杨桂通,黄小清.柱形平头弹体墩粗变形的理论分析[J].华南理工大学学报(自然科学版),2005,33(1):32―36.Zhang Xiaoqing,Yang Guitong,Huang Xiaoqing.Theoretical analysis of the mushrooming deformation of flattened cylindrical projectile[J].Journal of South China University of Technology(Natural Science Edition),2005,33(1):32―36.(in Chinese)
    [24]马晓青,韩峰.高速碰撞动力学[M].北京:国防工业出版社,1998:228―232.Ma Xiaoqing,Han Feng.Dynamics of high velocity impact[M].Beijing:National Defense Industry Press,1998:228―232.(in Chinese)
    [25]王晓强,朱锡.高速钝头弹侵彻中厚金属靶板的机理研究[J].工程力学,2010,27(12):213―218.Wang Xiaoqiang,Zhu Xi.Study on high-velocity blunt-nosed projectiles penetrating moderate thickness metallic targets[J].Engineering Mechanics,2010,27(12):213―218.(in Chinese)
    [26]梅志远,朱锡,张立军.高速破片穿透船用钢靶剩余特性研究[J].工程力学,2005,22(4):235―240.Mei Zhiyuan,Zhu Xi,Zhang Lijun.The residual characteristic of high-velocity fragments after perforation of ship hull[J].Engineering Mechanics,2005,22(4):235―240.(in Chinese)
    [27]Liang C C,Yang M F,Wu P W,et al.Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application[J].Ocean Engineering,2005,14,32(3/4):441―468.
    [28]王礼立.应力波基础[M].北京:国防工业出版社,2010:42―46.Wang Lili.Foundation of stress waves[M].Beijing:National Defense Industry Press,2010:42―46.(in Chinese)
    [29]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击,2003,23(2):188―192.Hu Changming,He Hongliang,Hu Shisheng.A study on dynamic mechanical behavior of 45 steel[J].Explosion and Shock Waves,2003,23(2):188―192.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700