镍基单晶高温合金在不同条件下的蠕变性能和组织演化(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Creep properties and microstructure evolution of nickel-based single crystal superalloy at different conditions
  • 作者:史振学 ; 李嘉荣 ; 刘世忠 ; 王效光
  • 英文作者:Zhen-xue SHI;Jia-rong LI;Shi-zhong LIU;Xiao-guang WANG;Science and Technology on Advanced High Temperature Structural Materials Laboratory,Beijing Institute of Aeronautical Materials;
  • 关键词:单晶高温合金 ; 蠕变性能 ; 组织演化 ; γ′相 ; TCP相
  • 英文关键词:single crystal superalloy;;creep properties;;microstructure evolution;;γ′ phase;;TCP phase
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:北京航空材料研究院先进高温结构材料重点实验室;
  • 出版日期:2014-08-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2014
  • 期:v.24
  • 语种:英文;
  • 页:ZYSY201408014
  • 页数:8
  • CN:08
  • ISSN:43-1239/TG
  • 分类号:116-123
摘要
研究[001]取向的镍基单晶高温合金在不同测试条件下的蠕变性能,采用扫描电镜和透射电镜研究合金蠕变断裂后的γ′相、TCP相和位错组织演化特征。结果表明:合金具有良好的蠕变性能,蠕变曲线显示出两种不同的蠕变变形特征。在(760°C,600 MPa)、(850°C,550 MPa)条件下,蠕变第一阶段较长;在(980°C,250 MPa)、(1070°C,140 MPa)和(1100°C,120 MPa)条件下,蠕变第一阶段很短。蠕变断裂后,在(760°C,600 MPa)条件下γ′相形态变化不大;在(850°C,550 MPa)条件下γ′相已经合并长大;在(980°C,250 MPa)条件下基体γ被γ′相包围;在(1070°C,140 MPa)条件下基体γ不再连续;在(1100°C,120 MPa)条件下基体γ厚度进一步增加。在(760°C,600MPa)、(850°C,550 MPa)和(980°C,250 MPa)条件下合金无TCP相析出,而在(1070°C,140 MPa)和(1100°C,120MPa)条件下有针状TCP相析出。在低温高应力下,变形特征为位错包括层错的剪切机制;在高温低应力下为位错绕过机制,并在γ/γ′相界面形成位错网。
        The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of(760 °C, 600 MPa) and(850 °C, 550 MPa) and the primary creep strain is limited at(980 °C, 250 MPa),(1100 °C, 140 MPa) and(1120 °C, 120 MPa). A little change of γ′ precipitate morphology occurs at(760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at(850 °C, 550 MPa). The γ phase is surrounded by the γ′ phase at(980 °C, 250 MPa). The γ phase is no longer continuous tested at(1070 °C, 140 MPa). At(1100 °C, 120 MPa), the thickness of γ phase continues to increase. No TCP phase precipitates in the specimens at(760 °C, 600 MPa),(850 °C, 550 MPa) and(980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at(1070 °C, 140 MPa) and(1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks at γ/γ′ interface under the condition of high temperature and lower stress.
引文
[1]WALSTON W S,O′HARA K,ROSS E W,POLLOCK T M,MURPHY W H.RenéN6:Third generation single crystal superalloy[C]//KISSINGER R D,DEYE D J,ANTON D L,CETEL A D,NATHAL M V,POLLOCK,T M,WOODFORD D A.Superalloys.Warrendale:TMS,1996:27-34.
    [2]ERICKSON G L.The development and application of CMSX-10[C]//KISSINGER R D,DEYE D J,ANTON D L,CETEL A D,NATHAL M V,POLLOCK,T M,WOODFORD D A.Superalloys.Warrendale:TMS,1996:35-44.
    [3]ARGENCE D,VERNAULT C,DESVALLEES Y,FOURNIER D.MC-NG:Generation single crystal superalloy for future aeronautical turbine blades and vanes[C]//POLLOCK T M.Superalloys.Warrendale:TMS,2000:829-837.
    [4]WALSTON S,CETEL A,MACKAY R,O′HARA K,DUHL D,DRESHFIELD R.Joint development of a fourth generation single crystal superalloy[C]//GREEN K A,POLLOK T M,HARADA H,HOWSON T W,REED R C,SCHIRRA J J,WALSTON S.Superalloys.Pennsylvania:TMS,2004:15-24.
    [5]CARON P,KHAN T.Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J].Aerospace Science Technology,1999,3:513-523.
    [6]ACHARYA M V,FUCHS G E.The effect of long term thermal exposures on the microstructure and properties of CMSX-10 single crystal superalloys[J].Materials Science and Engineering A,2004,381:143-153.
    [7]CHATTERJEE D,HAZARI N,DAS N,MITRA R.Microstructure and creep behavior of DMS4-type nickel based superalloy single crystals with orientations near [001] and [011][J].Materials Science and Engineering A,2010,528:604-613.
    [8]YEH A C,TIN S.Effect of Ru on the high temperature phase stability of Ni-base single crystal superalloys[J].Metallurgical and Materials Transactions A,2006,37:2621-2631.
    [9]HOBBS R A,ZHANG L,RAE C M F,TIN S.The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal suepralloy[J].Materials Science and Engineering A,2008,489:65-76.
    [10]TIAN S G,ZHENG Z,LIANG F S,CHAO Z,CHEN L.Creep behavior of a 4.5%-Re single crystal nickel-based superalloy at intermediate temperatures[J].Materials Science and Engineering A,2012,543:104-109.
    [11]YU X F,DU H Q,TIAN S G,NING Y,WANG T J,CUI S S.Creep deformation mechanism in Re free second generation nickelbase single crystal superalloy during medium temperature and high stress[J].The Chinese Journal of Nonferrous Metals,2012,21(7):1921-1928.(in Chinese)
    [12]WANG K G,LI J R.Study on creep properties of single crystal superalloy DD6 at 980°C[J].Journal of Material Engineering,2004,8:7-11.(in Chinese)
    [13]TIAN S G,ZHANG J H,ZHOU H H,YANG H C,XU Y B,HU Z Q.Aspects of primary creep of a single crystal nickel-base superalloy[J].Materials Science and Engineering A,1999,262:271-278.
    [14]SHI Z X,LI J R,LIU S Z,WANG X G,YUE X D.Effect of Ru on stress rupture properties of nickel-based single crystal superalloy at high temperature[J].Transactions of Nonferrous Metals Society of China,2012,22:2106-2111.
    [15]CARROLL L J,FENG Q,MANSFIELD J F,POLLOCK T M.Elemental partitioning in Ru-containing Nickel-base single crystal superalloys[J].Materials Science and Engineering A,2009:457:292-299.
    [16]NEUMEIER S,PYCZAK F,GKEN M.The influence of ruthenium and rhenium on the local properties of theγ-andγ′-phase in Nickel-base superalloys and their consequences for alloy behavior[C]//REED R C,GREEN K A,CARON P,GABB P,FAHRMANN G,HURON E S,WOODARD S A.Superalloys.Pennsylvania:TMS,2008:109-110.
    [17]RAE C M F,KARUNARATNE M S A,SMALL C J,BROOMFIELD R W,JONES C N,REED R C.Topologically close packed phases in an experimental Rhenium-containing single crystal superalloy[C]//Pollock T M,KISSINGER R D,BOWMAN R R,GREEN K A,MCLEAN M,OLSON S,SCHIRRA J J.Superalloys.Warrendale:TMS,2000:767-777.
    [18]RAE C M F,REED R C.Primary creep in single crystal superalloys:Origins,mechanisms and effects[J].Acta Materialia,2007,55:1067-1081.
    [19]TIAN S G,ZHANG J H,ZHOU H H,YANG H C,XU Y B,HU Z Q.Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy[J].Materials Science and Engineering A,2000,279:160-165.
    [20]YU J J,SUN X F,JIN T,ZHAO N R,GUAN H R,HU Z Q.High temperature creep and low cycle fatigue of a nickel-base superalloy[J].Materials Science and Engineering A,2010,527:2379-2389.
    [21]ZHANG J X,MURAKUMO T,KOIZUMI Y,KOBAYASHI T,HARADA H,MASAKI S.Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy[J].Metallurgical and Materials Transactions A,2002,33:3741-3746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700