带有橡胶垫层的混凝土接触特性试验及其内聚力模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CHARACTERISTICS OF DIRECT SHEAR TEST FOR PLAIN CONCRETE JOINT WITH RUBBER AND ITS COHESIVE ZONE MODEL
  • 作者:张振宇 ; 万璐 ; 冯吉利
  • 英文作者:ZHANG Zhen-yu;WAN Lu;FENG Ji-li;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology;School of Mechanics and Civil Engineering, China University of Mining and Technology;
  • 关键词:接触摩擦 ; 胶垫 ; 混凝土接触试验 ; 剪切峰值应力 ; PPR内聚力模型
  • 英文关键词:contact and friction;;rubber cushion;;shear test of concrete contact;;peak shear stress;;PPR's model
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室;中国矿业大学(北京)力学与建筑工程学院;
  • 出版日期:2018-08-25
  • 出版单位:工程力学
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金项目(U1261212,51134005)
  • 语种:中文;
  • 页:GCLX201808010
  • 页数:12
  • CN:08
  • ISSN:11-2595/O3
  • 分类号:65-76
摘要
针对带有橡胶垫层的混凝土试件,通过直剪试验研究了带有橡胶垫层的混凝土接触摩擦特性。采用PPR内聚力模型表征接触面的接触摩擦特性,对试验结果进行了模拟分析。试验结果表明:在带有橡胶垫层的混凝土接触面剪切过程中,剪切应力与剪切位移的变化过程可分为弹性、弹塑性硬化和应变软化变形阶段。当轴向应力在1.5 MPa~13 MPa范围内时,残余强度与剪切强度比在55%~65%,当轴向应力为17 MPa和21 MPa时,残余强度与剪切强度比大约分别为70%、80%。橡胶垫层在混凝土之间起到良好的缓冲作用。在轴向应力较大时,接触面的应力变形会伴有明显的软化变形阶段。利用Archard非线性幂次准则描绘了剪切峰值应力与轴向应力的关系,准则中常数k和m分别为0.97和0.33。PPR内聚力模型计算表明剪切应力随剪切位移变化关系曲线与试验结果基本吻合,为研究盾构管片块体间的接触摩擦作用研究提供借鉴。
        The contact and friction characteristics of concrete specimens with rubber is studied by direct shear tests in conjunction with theoretical model, i.e., PPR's cohesive zone model, which was employed to describe the mechanical behaviors of the specimens under shear loading conditions. The experiment results show that the constitutive response of the shear stress-displacement in the interface can be approximately characterized by initial elasticity, elastoplastic hardening, and strain softening. When the normal pressures acted upon the concrete specimens are in the range of 1.5 MPa~13 MPa, the ratio of residual strength with respect to shear strength is about 55%~65%. When the normal pressures acted upon the concrete specimens are 17 MPa and 21 MPa, the ratio of residual strength with respect to shear strength are then about 70% and 80%, respectively. Furthermore, the rubber plays a good buffer role in the interfaces. Especially in the large normal pressure, the phenomena of significant softening and sliding are observed at the contact surface, in which the Archard nonlinear power law is used to describe the relation between peak shear stress and the normal stress in the friction contact, and the constants parameters k and m in the law are 0.97 and 0.33 respectively. Finally, the prediction by the PPR model employed in the numerical modelling is found in fair agreement with the experimental results, which is helpful to study the joint behavior of shield tunnel.
引文
[1]瓦伦丁L波波夫.接触力学与摩擦学的原理及其应用[M].李强,雒建斌,译.北京:清华大学出版社,2011:1―27.Valentin L P.Contact Mechanics and Friction Physical Principies and Applications[M].Li Qiang,Luo Jianbian,Translation,Beijing:Tsinghua University Press,2011:1―27.(in Chinese)
    [2]徐泽友,卢廷浩,丁明武.高塑性黏土与混凝土接触面剪切特性[J].河海大学学报:自然科学版,2009,37(1):71―74.Xu Zeyou,Lu Tinghao,Ding mingwu.Shear properties at interface between highly plastic clay and concrete[J].Journal of Hohai University(Natural Sciences),2009,37(1):71―74.(in Chinese)
    [3]Anubhav,Basudhar P K.Modeling of soil–woven geotextile interface behavior from direct shear test results[J].Geotextiles and Geomembranes,2010,28(4):403―408.
    [4]Tuna S C,Altun S.Mechanical behaviour of sand-geotextile interface[J].Scientia Iranica,2012,19(4):1044―1051.
    [5]Taha A,Fall M.Shear behavior of sensitive marine clay–steel interfaces[J].Acta Geotechnica,2014,9(6):969―980.
    [6]Pellet F L,Keshavarz M.Shear behavior of the interface between drilling equipments and shale rocks[J].Journal of Petroleum Exploration and Production Technology,2014,4(3):245―254.
    [7]吕鹏,刘建坤.冻土与混凝土接触面直剪试验研究[J].铁道学报,2015(2):106―110.LüPeng,Liu Jiankuan.An experimental study on direct shear tests of frozen soil-concrete interface[J].Journal of the China Railway Society,2015(2):106―110.(in Chinese)
    [8]曾维德,张家生,龙尧.红黏土-混凝土光滑接触面直剪试验研究[J].铁道科学与工程学报,2015(4):795―800.Zeng Weide,Zhang Jiasheng,Long Yao.Experimental study of manchanical behavior of red clay soil-concrete smooth interface by direct shear test[J].Journal of Railway Science and Engineering,2015(4):795―800.(in Chinese)
    [9]陈光明,刘迪,李云雷,等.抗剪加固FRP与混凝土界面粘结性能的试验研究[J].工程力学,2015(7):164―175.Chen Guangming,Liu Di,Li Yunlei,et al.Bond behavior between shear strengthening FRP and concrete:an experimental study[J].Engineering Mechanics,2015(7):164―175.(in Chinese)
    [10]石泉彬,杨平,王国良.人工冻结砂土与结构接触面冻结强度试验研究[J].岩石力学与工程学报,2016,35(10):2142―2151.Shi Quanbin,Yang Ping,Wang Guoliang.Experimental study on adfreezing strength of the interface between artificial frozen sand and structure[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(10):2142―2151.(in Chinese)
    [11]吉延峻,贾昆,俞祁浩,等.现浇混凝土-冻土接触面冻结强度直剪试验研究[J].冰川冻土,2017,39(1):86―91.Ji Yanjun,Jia Kun,Yu Qihao,et al.Direct shear tests of freezing strength at the interface between case-in-situ concrete and frozen soil[J].Journal of Glaciology and Geocryology,2017,39(1):86―91.(in Chinese)
    [12]丁瑜,杨奇,夏振尧,等.生态护坡基材土-岩接触面原位剪切试验研究[J].岩土力学,2015(增刊2):383―388.Ding Yu,Yang Qi,Xia Zhenyao,et al.In-situ shear tests on base material soil-rock interface in ecological slope protection system[J].Rock and Soil Mechanics,2015(Suppl 2):383―388.(in Chinese)
    [13]Markou I N.A study on geotextile—sand Interface behavior based on direct shear and triaxial compression tests[J].International Journal of Geosynthetics and Ground Engineering,2018,4(8):1―15.
    [14]Li X.J,Yan Z.G,Zhen Wang,et al.Experimental and analytical study on longitudinal joint opening of concrete segmental lining[J].Tunnelling and Underground Space Technology,2015,46:52―63.
    [15]Teachacorasinskun S,Chub-Uppakam T.Influence of segmental joints on tunnel lining[J].Tunnelling and Underground Space Technology,2010,25:490―494.
    [16]Do,N.-A.,Dias D,Oreste P,et al.2D numerical investigation of segmental tunnel lining behavior[J].Tunnelling and Underground Space Technology,2013,37:115―127.
    [17]朱伟,钟小春,秦建设.盾构衬砌管片接头力学分析及双直线刚度模型研究[J].岩土力学,2006,27(12):2154―2158.Zhu Wei,Zhong Xiaochun,Qin Jianshe.Mechanical analysis of segment joint of shield tunnel and research on bilinear joint stiffness model[J].Rock and Soil Mechanics,2006,27(12):2154―2158.(in Chinese)
    [18]刘四进,封坤,何川,等.大断面盾构隧道管片接头抗弯力学模型研究[J].工程力学,2015,32(12):215―224.Liu Sijin,Feng Kun,He Chuan,et al.Study on the behavior mechanical model of segmental joints in shield tunnel with large cross-section[J].Engineering Mechanics,2015,32(12):215―224.(in Chinese)
    [19]孙新阳,杨维国,王萌,等.剪切变形下橡胶支座压缩刚度比分析研究[J].工程力学,2017,34(1):58―68.Sun Xinyang,Yang Weiguo,Wang Meng,et al.Compression stiffness ratio of rubber behavior under shear deformation[J].Engineering Mechanics,2017,34(1):58―68.(in Chinese)
    [20]Climent M,Oriol A.Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test.Part 1:Test configuration and execution[J].Tunnelling and Underground Space Technology,2011,26:764―777.
    [21]张振宇,李豪杰,李朝君,等.盾构管片接缝传力垫层的接触特性试验研究[J].隧道建设,2017,37(11):1404―1408.Zhang Zhenyu,Li Haojie,Li Chaojun,et al.Experimental study of contact characteristics of rubber cushion used in shield segment joints[J].Tunnel Construction,2017,37(11):1404―1408.(in Chinese)
    [22]张振宇,贾长恒,李豪杰,等.橡胶垫对隧道衬砌管片接触特性的影响试验研究[J].铁道建筑,2017(7):68―70.Zhang Zhenyu,Jia Changheng,Li Haojie,et al.Experimental study on influence of rubber cushion on contact characteristics of tunnel lining segment[J].Railway Engineering,2017(7):68―70.(in Chinese)
    [23]Ma Y.Constitutive Modeling of Joints and Interfaces By Using Disturbed State Concept[D].Tucson:The University of Arizona,1990:52―62.
    [24]Archard J F.Elastic Deformation and the Laws of Friction[J].Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences,1957,243(3):190―205.
    [25]Park K,Paulino G H.Cohesive Zone Models:A Critical Review of Traction-Separation Relationships Across Fracture Surfaces[J].Applied Mechanics Reviews,2011,64(6):681―700.
    [26]Cerrone A,Wawrzynek P,Nonn A,et al.Implementation and verification of the Park–Paulino–Roesler cohesive zone model in 3D[J].Engineering Fracture Mechanics,2014,120(4):26―42.
    [27]Spring D W,Paulino G H.A growing library of three-dimensional cohesive elements for use in ABAQUS[J].Engineering Fracture Mechanics,2014,126(2014):190―216.
    [28]Park K.Potential-Based Fracture Mechanics Using Cohesive Zone and Virtual Internal Bond Modeling[D].Lllinois:University of lllinois Urbana-Champaign,2009:48―56.
    [29]Park K,Paulino G H,Roesler J R.A unified potential-based cohesive model of mixed-mode fracture[J].Journal of the Mechanics and Physics of Solids,2009,57(6):891―908.
    [30]张振宇,贾长恒,李豪杰,等.混凝土与混凝土接触摩擦试验及其数值计算模型[J].沈阳建筑大学学报(自然科学版),2017(5):781―791.Zhang Zhenyu,Jia Changheng,Li Haojie,et al.Experimental and numerical calculation model of the friction contact between concrete and concrete[J].Journal of Shenyang Jianzhu University(Natural Science),2017(5):781―791.(in Chinese)
    [31]Spring D W,Paulino G H.Computational homogenization of the debonding of particle reinforced composites:The role of interphases in interfaces[J].Computational Materials Science,2015,109(2015):209―224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700