新疆夏季对流性降水时空分布特征及成因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Temporal and Spatial Characteristics of Convective Precipitation in Xinjiang among the Summer and Causes Analysis
  • 作者:蒋慧敏 ; 刘春云 ; 贾健 ; 赵德龙 ; 冯静洁
  • 英文作者:JIANG Huimin;LIU Chunyun;JIA Jian;ZHAO Delong;FENG Jingjie;Urumqi Meteorological Bureau;
  • 关键词:新疆 ; 对流性降水 ; 时空分布特征 ; 环流成因
  • 英文关键词:Xinjiang;;convective precipitation;;spatial and temporal characteristics;;causes analysis
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:乌鲁木齐市气象局;
  • 出版日期:2019-04-28
  • 出版单位:高原气象
  • 年:2019
  • 期:v.38
  • 基金:中国沙漠气象科学基金项目(Sqj2014010)
  • 语种:中文;
  • 页:GYQX201902010
  • 页数:9
  • CN:02
  • ISSN:62-1061/P
  • 分类号:116-124
摘要
利用1979—2016年ERA-Interim再分析数据对新疆地区夏季对流性降水的时空分布特征及环流成因开展了研究。结果表明:(1)新疆夏季降水主要集中在山区,对流性降水占总降水的比例在50%上下,在大部分盆地地区,对流性降水占比达70%以上;(2)对流性降水EOF第一模态表现为塔里木盆地西侧山区和伊犁及天山北麓的反相位变化,这种分布在21世纪00年代以前存在5年和10年左右的周期,而从1995年开始出现突变。而大范围降水塔里木盆地南侧山区和天山区域是同相位的空间型分布;(3)水汽条件和层结不稳定条件的差异共同作用导致了塔里木盆地西侧和伊犁两个地区夏季对流性降水反相位的变化。
        In order to study the temporal and spatial distribution characteristics of convective precipitation and the causes of circulation in the Xinjiang area in summer,the ERA-Interim reanalysis data are utilized in this article,including precipitation products such as convective precipitation,large-scale precipitation and total precipitation,and meteorological variables such as geopotential height,relative humidity,specific humidity,temperature and winds. The results of the analysis indicate that:(1) On the characteristics of average precipitation in summer,average total precipitation and the proportion of convective precipitation showspatial distribution with the terrain.The accumulated total summer precipitation in Kunlun and Tianshan Mountains is above 200 mm on average,but for basin region it is below40 mm. The proportion of convective precipitation in most basin region is more than70%,while it is less than 50% for Kunlun Mountains and 50% ~ 60% for Tianshan Mountains.(2) The Emprical orthogonal function(EOF) method is used to analyse the temporal and spatial distribution of convective precipitation in summer. The first mode from EOF analysis shows that there are a positive phase in the western moutainous area of Tarim basin and a negative phase in Ili region and the northern part of Tianshan Mountains,which indicates that the main spatial-temporal characteristic of the above two regions is anti-phase change. The time coefficients of this pattern show5 a and 10 a main period before 2000 s. Since 1995,there has been a sudden change,convective precipitation decreases in the west of Tarim Basin,while increases in Ili region and the northern foot of Tianshan Mountains. And this pattern is different from the first mode of large-scale precipitation which shows the same phase in the southern Tarim Basin and Tianshan Mountains.(3) On the analysis based on the anomalies of whole layer water vapour fluxes,precipitable water and geopotential heights fields,it is found that the blocking system in Eurasian mid-high latitude are stronger in typical lowyears of convective precipitation PC1 compared with the high years. The northern part of Xinjiang lies between the Ural Trough and the Baikal Lake high pressure,which weakens the northward water vapor transport in Xinjiang and leads to less water vapor transport across and around the Tianshan Mountains to the southern basin of Xinjiang,and more water vapor accumulates in the northern part of Tianshan Mountains. Under the background of this large-scale circulation,the vertical warming range of the lower layer in Ili region is larger and wetter than that in the western tarim basin,which makes the former's stratification instability condition stronger. The difference in both the water vapor condition and the stratification unstable condition leads to the change of the opposite phases of the convective precipitation in that two regions.
引文
Berrisford P,Dee D,Poli P,et al,2011.The ERA-Interim archive Version 2.0[M].ECM WF,1-27.
    Dee D P,Uppala S M,Simmons A J,et al,2011.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal M eteorological Society,137(656):553-597.DOI:10.1002/qj.828.
    Ecmw f,IFS Documentation-Cy43r3,Part II:Data Assimilation[M].2017.https://www.ecmwf.int/en/elibrary/17734-part-ii-data-assimilation
    Lopez P,Moreau E,2005.A convection scheme for data assimilation:Description and initial tests[J].Quarterly Journal of the Royal Meteorological Society,131(606):409-436.DOI:10.1256/qj.04.69.
    RulfováZ,BeranováR,Kysely'J,2016.Climate change scenarios of convective and large-scale precipitation in the Czech Republic based on EURO-CORDEX data[J].International Journal of Climatology,37(5):2451-2465.DOI:10.1002/joc.4857.
    Tompkins A M,JaniskováM,2004.A cloud scheme for data assimilation:Description and initial tests[J].Quarterly Journal of the Royal Meteorological Society,130(602):2495-2517.DOI:10.1256/qj.03.162.
    阿不都外力·阿不力克木,王元,王亦平,等,2014.一次强对流天气及其中短时强降水的成因分析[J].气象科学,34(4):457-464.DOI:10.3969/2013jms.0095.
    戴新刚,李维京,马柱国,2006.近十几年新疆水汽源地变化特征[J].自然科学进展,16(12):1651-1656.DOI:10.3321/j.issn.1002-008X.2006.12.018.
    邓军英,丁明月,王文彩,等,2016.冰云粒子微物理属性在一次强降雨过程中的垂直分布[J].干旱区地理,39(3):590-599.
    丁一汇,2005.高等天气学(第二版)[M].北京:气象出版社,585.
    范彬彬,罗格平,张弛,2013.新疆夏季降水时空分布的适用性评估[J].地理研究,32(9):1602-1612.DOI:10.11821/dlyj201309003.
    李健,宇如聪,陈昊明,等,2010.对三套再分析资料中国大陆地区夏季降水量的评估分析[J].气象,36(12):1-9.DOI:10.7519/j.issn.1000-0526.2010.12.001.
    吕世海,刘及东,郑志荣,等,2015.降水波动对呼伦贝尔草甸草原初级生产力年际动态影响[J].环境科学研究,28(4):550-558.DOI:10.13198/j.issn.1001-6929.2015.04.09
    孟庆兰,赵赫,高军凯,等,2017.科尔沁地区年降水波动与空间分异特征[J].高原气象,36(5):1234-1244.DOI:10.7522/j.issn.1000-0534.2016.00114.
    南庆红,杨舵,杨青,2003.应用EOF方法分析新疆降水变化特征[J].中国沙漠,23(5):554-559.
    史玉光,孙照渤,2008.新疆水汽输送的气候特征及其变化[J].高原气象,27(2):310-319.
    史玉光,孙照渤,杨青,2008.新疆区域面雨量分布特征及其变化规律[J].应用气象学报,19(3):326-332.DOI:10.3969/j.issn.1001-7313.2008.03.008.
    王江,周雅蔓,王昀,等,2015.2014年夏初南疆一次持续性强降雨过程的水汽和动力条件分析[J].干旱区地理,38(6):1103-1111.
    王谦,1983.中国干旱、半干旱地区的分布及其主要气候特征[J].干旱地区农业研究,(1):11-24.
    王前,赵勇,陈飞,等,2017.南亚高压的多模态特征及其与新疆夏季降水的联系[J].高原气象,36(5);1209-1220.DOI:10.7522/j.issn.1000-0534.2016.00123.
    王旭,张嘉伟,马禹,等,2016.天山山脉强降水云宏微观物理属性的空间分布特征[J].干旱区地理,39(6):1153-1161.
    魏凤英,2007.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社,269.
    吴洪宝,吴蕾,2005.气候变率诊断和预测方法(第二版)[M].北京:气象出版社,371.
    谢启玉,巩远发,杨蓉,2015.冬季青藏高原湿中心区域水汽收支及其与中国降水的关系[J].干旱气象,33(5):732-739.
    辛渝,毛炜峄,李元鹏,等,2009.新疆不同季节降水气候分区及变化趋势[J].中国沙漠,29(5):948-959.
    许东蓓,苟尚,肖玮,等,2018.两种类型短时强降水形成机理对比分析---以甘肃两次短时强降水过程为例[J].高原气象,37(2):524-534.DOI:10.7522/j.issn.1000-0534.2017.00056.
    郝立生,丁一汇,闵锦忠,2016.东亚夏季风变化与华北夏季降水异常的关系[J].高原气象,35(5):1280-189.DOI:10.7522/j.issn.1000-0534.2015.00085.
    杨玮,徐敏,周顺武,等,2017.江淮流域6-7月极端强降水事件时空变化及环流异常[J].高原气象,36(3):718-735.DOI:10.7522/j.issn.1000-0534.2016.00047.
    姚俊强,杨青,毛炜峄,等,2018.基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J].高原气象,37(1):68-77.DOI:10.7522/j.issn.1000-0534.2017.00031.
    张家宝,1986.新疆短期天气预报指导手册[M].乌鲁木齐:新疆人民出版社.
    张强,姚玉璧,李耀辉,等,2015.中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J].地球科学进展,30(2):196-213.DOI:10.11867/j.issn.1001-8166.2015.02.0196.
    申红艳,陈丽娟,胡泊,等,2017.西北中部夏季降水主要空间型及环流特征[J].高原气象,36(2):455-467.DOI:10.7522/j.issn.1000-0534.2016.00139.
    仲凌志,刘黎平,顾松山,2007.层状云和对流云的雷达识别及在估测雨量中的应用[J].高原气象,26(3):593-602.
    周杰,吴永萍,封国林,2013.ERA-Interim中的中国地区水分循环要素的时空演变特征分析[J].物理学报,62(19):556-564.DOI:10.7498/aps.62.199202.
    庄薇,刘黎平,王楠,2006.新疆地区一次对流性降水的三维中尺度风场研究[J].应用气象学报,17(4):444-451.DOI:10.3969/j.issn.1001-7313.2006.04.008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700