催化裂化柴油不同加氢转化过程对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on different hydro-conversion processes for FCC diesel
  • 作者:彭冲 ; 陈俊森 ; 吴子明
  • 英文作者:Peng Chong;Chen Junsen;Wu Ziming;SINOPEC Dalian Research Institute of Petroleum and Petrochemicals;East China University of Science & Technology;
  • 关键词:催化裂化柴油 ; 加氢精制 ; 加氢改质 ; 加氢转化 ; 加氢裂化
  • 英文关键词:FCC diesel;;hydrofining;;hydro-upgrading;;hydroconversion;;hydrocracking
  • 中文刊名:LYSZ
  • 英文刊名:Petroleum Refinery Engineering
  • 机构:中国石油化工股份有限公司大连石油化工研究院;华东理工大学;
  • 出版日期:2018-06-14 17:04
  • 出版单位:炼油技术与工程
  • 年:2018
  • 期:v.48;No.392
  • 基金:国家重点研发计划(2017YFB0306503);; 中国石油化工股份有限公司合同项目(114084)
  • 语种:中文;
  • 页:LYSZ201806015
  • 页数:5
  • CN:06
  • ISSN:41-1139/TE
  • 分类号:41-45
摘要
采用镇海催化裂化(MIP)柴油和伊朗减压馏分油(VGO)为原料油,对加氢精制、加氢改质、加氢转化和加氢裂化4种工艺进行对比。结果表明:加氢精制仅能实现柴油的脱硫精制,十六烷值增幅为2~7单位;加氢改质能够大幅提高十六烷值,增幅达到12~20单位;加氢转化可生产辛烷值大于90的汽油调合组分或高芳烃潜含量石脑油,同时生产低硫柴油,十六烷值增幅为8~30单位;加氢裂化可增产轻石脑油、喷气燃料,同时减少柴油产量,视加氢裂化装置反应条件及掺炼比例的不同,可直接生产十六烷值大于51的优质柴油产品。
        Zhenhai MIP diesel and Iran VGO were tested as the feedstocks under four processing conditions of hydrofining,hydro-upgrading,hydro-conversion and hydrocracking,and the 4 processes were compared. The results show that the hydrofining can only achieve desulfurization of diesel oil and elevate cetane number by 2 ~ 7 units; The hydro-upgrading can greatly raise the cetane number by 12 ~ 20 units; Hydro-conversion can produce high octane number gasoline blending components whose octane number is over 90 as well as naphtha with high potential aromatics. At the same time,the low-sulfur diesel is produced whose cetane number is increased by 8 ~ 30 units. The hydrocracking process can increase the production of light naphtha and jet fuel,while reducing the production of diesel. The high-quality diesel product whose cetane number is greater than 51 can be directly produced based upon the different reaction conditions and blending ratio of hydrocracking unit.
引文
[1]侯祥麟.中国炼油技术[M].2版.北京:中国石化出版社,2001:117.
    [2]毛安国,龚剑洪.催化裂化轻循环油生产轻质芳烃的分子水平研究[J].石油炼制与化工,2014,45(7):1-6.
    [3]龚剑洪,毛安国.LCO催化裂化轻循环油加氢-催化裂化组合生产高辛烷值汽油或轻质芳烃(LTAG)技术[J].石油炼制与化工,2016,47(9):1-5.
    [4]张寒,王吉云.催化柴油加工路线选择及经济性分析[J].石油与天然气化工,2014,44(4):39-42.
    [5]王宏奎,王金亮,何观伟,等.柴油加氢改质技术研究进展[J].工业催化,2013,21(10):16-19.
    [6]任亮.LCO加氢转化生产高辛烷值汽油(RLG)技术开发与工业应用[C]//2015年炼油加氢技术交流会论文集,2015:216-220.
    [7]黄新露.重芳烃高效转化生产轻芳烃技术[J].化工进展,2013,32(9):2263-2266.
    [8]高磊.催化柴油加工路线选择及优化[J].石油炼制与化工,2017,48(7):64-69.
    [9]徐光明,于长青.加氢裂化装置掺炼劣质催化裂化柴油技术的应用[J].炼油技术与工程,2011,41(4):1-5.
    [10]孔健.加氢裂化装置掺炼催化裂化柴油的探讨[J].石油化工技术与经济,2012,28(5):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700