基于CFD分析的电动汽车电池包加热方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heating strategy for electric vehicular battery pack based on CFD analysis
  • 作者:黄钰期 ; 梅盼 ; 陈晓济 ; 邓长水
  • 英文作者:HUANG Yu-qi;MEI Pan;CHEN Xiao-ji;DENG Chang-shui;College of Energy Engineering, Zhejiang University;Fujian E-power Electronic Technology Co.Ltd;
  • 关键词:锂离子电池 ; 加热 ; 仿真计算 ; 多孔介质简化 ; 实验验证
  • 英文关键词:lithium battery;;heating;;numerical simulation;;porous simplification;;experimental verification
  • 中文刊名:ZDZC
  • 英文刊名:Journal of Zhejiang University(Engineering Science)
  • 机构:浙江大学能源工程学院;福建易动力电子科技股份有限公司;
  • 出版日期:2019-01-21 15:39
  • 出版单位:浙江大学学报(工学版)
  • 年:2019
  • 期:v.53;No.346
  • 语种:中文;
  • 页:ZDZC201902001
  • 页数:8
  • CN:02
  • ISSN:33-1245/T
  • 分类号:6-12+18
摘要
锂离子电池对温度环境要求严苛,在低温下常出现失效、寿命衰退等现象.因此,为电池包设计高效、均匀且节能的加热方案,成为电动汽车在北方环境下发展的关键.引入计算流体动力学(CFD)的仿真计算方法,并采用多孔介质理论对电池包中电池模块进行简化分析,对电动汽车电池包在加热过程中的温升特性进行仿真分析计算,将仿真计算结果与实测数据进行对比验证,证明所采用的仿真方法及多孔介质简化模型可有效应用于电动汽车电池包的加热方案评估.根据分析结果对加热方案提出修正,并设计分块化的加热方案,即对局部加热功率进行控制.计算结果显示,优化后的分块加热方案,在总体功率降低167 W(约7%)的情况下,仍然可在50 min内将电池包从-13℃加热到5℃,并且将电池包中电池区域最大温差控制在5℃以内.
        The performance of lithium batteries relies significantly on the ambient temperature. They often become ineffective or demonstrate a shortened lifespan at low temperatures. Therefore, designing an effective, uniform, and energy-efficient heating system for the battery pack becomes the key to the development of electric vehicles in northern environment. The method of numerical simulation adopted from computational fluid dynamics(CFD) was introduced, and the porous theory was used to conduct a simplified analysis of battery module in the battery pack.The rise of temperature during the heating process of the battery pack of electric vehicles was simulated, and the simulation and experimental results were compared. Results showed that the combination of simulation method and porous simplification model was effective in evaluating the heating system of electric vehicle battery pack. The heating strategy was modified based on the analysis results, and a heating system that consisted of multiple heating zones was designed, which can keep the heating power of each part in control. Results showed that there was an overall power reduction of 167 W(about 7%) under the optimized multi-zone heating system, and the battery pack can still be heated from-13 ℃ to 5 ℃ within 50 minutes, with the maximum temperature difference within the zones of the battery pack being kept under 5 ℃.
引文
[1]霍宇涛,饶中浩,赵佳腾,等.低温环境下电池热管理研究进展[J].新能源进展,2015,3(1):53-57.HUO Yu-tao,RAO Zhong-hao,ZHAO Jia-teng,et al.Research development of battery thermal management at low temperature[J].Advances in New and Renewable Energy,2015,3(1):53-57.
    [2]ZHANG X W,KONG X,LI G J,et al.Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions[J].Energy,2014,64:1092-1101.
    [3]RAO Z H,WANG S F,ZHANG G Q.Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J].Energy Conversion and Management,2011,52(12):3408-3414.
    [4]RAO Z H,WANG S F.A review of power battery thermal energy management[J].Renewable and Sustainable Energy Reviews,2011,15(9):4554-4571.
    [5]饶中浩.基于固液相变传热介质的动力电池热管理研究[D].广州:华南理工大学,2013.RAO Zhong-hao.Research on power battery thermal management based onsolid-liquid phase change heat transfer medium[D].Guangzhou:South China University of Technology,2013.
    [6]DUAN X,NATERER G F.Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J].International Journal of Heat and Mass Transfer,2010,53(23/24):5176-5182.
    [7]RAO Z,WANG S,ZHANG Y.Thermal management with phase change material for a power battery under cold temperatures[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2014,36(20):2287-2295.
    [8]HUO Y,RAO Z.Investigation of phase change material based battery thermalmanagement at cold temperature using lattice Boltzmann method[J].Energy Conversion and Management,2017,133:204-215.
    [9]PESARAN A,VLAHINOS A,STUART T.Cooling and preheating of batteries in hybrid electric vehicles[C]//Proceedings of the 6th ASME-JSMEThermal Engineering Joint Conference.Hawaii:[s.n.],2003:1-7.
    [10]COSLEY M R,GARCIA M P.Battery thermal management system[C]//Proceedings of the INTELEC 26th Annual International Telecommunications Energy Conference.Chicago:[s.n.],2004:38-45.
    [11]HANDE A,STUART T A.AC heating for EV/HEVbatteries[C]//Proceedings of the Power Electronics in Transportation.Portugal:[s.n.],2002:119-124.
    [12]HANDE A.Internal battery temperature estimation using series battery resistance measurements during cold temperatures[J].Journal of Power Sources,2006,158(2):1039-1046.
    [13]HANDE A.A high frequency inverter for cold temperature battery heating[C]//Proceedings of the 2004 IEEE Workshop on Computers in Power Electronics.Portugal:IEEE,2004:215-222.
    [14]张承宁,雷治国,董玉刚.电动汽车锂离子电池低温加热方法研究[J].北京理工大学学报,2012,39(9):921-925.ZHANG Cheng-ning,LEI Zhi-guo,DONG Yu-gang.Method for heating low-temperature lithium battery in electric vehicle[J].Transactions of Beijing Institute of Technology,2012,39(9):921-925.
    [15]LEFEBVRE L.Smart battery thermal management for PHEV efficiency[J].Oil and Gas Science and Technology-Revue D IFP Energies Nouvelles,2013,68(1):149-164.
    [16]FLIPSE J,BAKKER F L,SLACHTER A,et al.Direct observation of the spin-dependent Peltier effect[J].Nature Nanotechnology,2012,7(3):166-168.
    [17]WIJNGAARDS D D L,WOLFFENBUTTEL R F.Study on temperature stability improvement of onchip reference elements using integrated Peltier coolers[J].IEEE Transactions on Instrumentation and Measurement,2003,52(2):478-482.
    [18]TROXLER Y,WU B,MARINESCU M,et al.The effect of thermal gradients on the performance of lithium-ion batteries[J].Journal of Power Sources,2014,247:1018-1025.
    [19]SALAMEH Z M,ALAOUI C.Modeling and simulation of a thermal management system for electric vehicles[C]//Proceedings of the Industrial Electronics Society.Roanoke:IEEE,2003:887-890.
    [20]ALAOUI C,SALAMEH Z M.A novel thermal management for electric and hybrid vehicles[J].IEEE Transactions on Vehicular Technology,2005,54(2):468-476.
    [21]LEE D Y,CHO C W,WON J P,et al.Performance characteristics of mobile heat pump for a large passenger electric vehicle[J].Applied Thermal Engineering,2013,50(1):660-669.
    [22]袁昊,王丽芳,王立业.基于液体冷却和加热的电动汽车电池热管理系统[J].汽车安全与节能学报,2012,3(4):371-380.YUAN Hao,WANG Li-fang,WANG Li-ye.Battery thermal management system with liquid cooling and heating in electric vehicles[J].Journal of Automotive Safety and Energy,2012,3(4):371-380.
    [23]PESARAN A,KEYSER M,BURCH S.An approach for designing thermal managementsystems for electric and hybrid vehicle battery packs[C]//Proceeding of the 4th Vehicle Thermal Management Systems Conference and Exhibition.London:Professional Engineering Publishing Ltd,1999.
    [24]ZHU C,LI X,SONG L,et al.Development of a theoretically based thermalmodel for lithium-ion battery pack[J].Journal of Power Sources,2013,223:155-164.
    [25]MIN J K,LEE C H.Numerical study on the thermal management system of a molten sodium-sulfur battery module[J].Journal of Power Sources,2012,210:101-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700