航空/海洋重力仪用加速度计现状与优化方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current Status and Improvement of Accelerometers for Airborne/Marine Gravimeter
  • 作者:陈展 ; 于湘涛 ; 魏超 ; 杨杏敏 ; 彭福英
  • 英文作者:CHEN Zhan;YU Xiang-tao;WEI Chao;YANG Xing-min;PENG Fu-ying;The Navy Military Representative Office Stationed in the Third Institute of CASIC;Beijing Institute of Automatic Control Equipment;
  • 关键词:重力仪 ; 石英挠性加速度计 ; 稳定性 ; 分辨率 ; 噪声
  • 英文关键词:Gravimeter;;Quartz flexure accelerometer;;Stability;;Resolution;;Noise
  • 中文刊名:DWSS
  • 英文刊名:Navigation Positioning and Timing
  • 机构:海军驻航天三院军事代表室;北京自动化控制设备研究所;
  • 出版日期:2019-03-12 08:55
  • 出版单位:导航定位与授时
  • 年:2019
  • 期:v.6;No.29
  • 基金:国家自然科学基金重大科研仪器研制项目(41527803)
  • 语种:中文;
  • 页:DWSS201902015
  • 页数:6
  • CN:02
  • ISSN:10-1226/V
  • 分类号:96-101
摘要
采用石英挠性加速度计作为重力敏感器的航空/海洋重力仪是典型的重力信息采集仪器,要求石英挠性加速度计具有一次通电稳定性高、高分辨率、低噪声的特点。为了满足航空/海洋重力仪需求,首先,分析了石英挠性加速度计一次通电稳定性机理,确定了关键影响因素,并给出了优化方向;其次,建立了加速度计分辨率模型,给出了测试方法和后续优化方向;最后,通过试验确定了噪声水平,根据关键影响因素给出了优化方向。通过上述研究的开展,为石英挠性加速度计在重力测量领域中的应用奠定了基础。
        Airborne/marine gravimeter with quartz flexure accelerometer as the gravity sensor is a typical gravity information measuring instrument. To measure the gravity signal, the high stability, high resolution, and low noise are needed for quartz flexure accelerometer. To meet the needs of the instrument, the following three aspects are studied. Firstly, the stability mechanism is analyzed, and the stability improvement design is presented. Secondly, the resolution model is built, the resolution level is evaluated and the optimization design of improving resolution is advanced. Finally, the noise level is evaluated and the optimization design of noise reduction is provided. Based on the mentioned research, the foundation to carry out the application of accelerometer in the gravity measurement is laid.
引文
[1] Dransfield M H, Christensen A N. Performance of airborne gravitygradiometers[J].The Leading Edge, 2013, 32(8): 908-922.
    [2] Krasnov A A, Sokolov A V, Rzhevskiy N N. First airborne gravity measurements aboard a dirigible[J]. Seismic Instruments, 2015, 51(3): 252-255.
    [3] Jekeli C, Kwon J H. Results of airborne vector(3-D) gravimetry[J]. Geophysical Research Letters, 1999, 26(23): 3533-3536.
    [4] Christensen A N, Dransfield M H, Galder C V. Noise and repeatability of airborne gradiometry[J]. First Break, 2015, 33(4): 55-63.
    [5] 胡平华, 赵明, 黄鹤, 等. 航空、海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017, 4(4): 10-19. Hu Pinghua, Zhao Ming, Huang He, et al. Review on the development of airborne/marine gravimetry instruments[J]. Navigation Positioning and Timing, 2017, 4(4):10-19(in Chinese).
    [6] Foote S A, Grideland D B. Model QA-3000 Q-Flex accelerometer high performance test results[C]// IEEE PLANS 92 Position Location and Navigation Symposium Record. Monterey, CA, 1992: 534-543.
    [7] Monajemi P, Ayazi F. Design optimization and implementation of a microgravity capacitive HARPSS accelerometer[J]. IEEE Sensors Journal, 2006, 6(1): 39-46.
    [8] 于湘涛, 张菁华, 杜祖良. 石英挠性加速度计参数长期重复性技术研究[J]. 导航定位与授时, 2014, 1(1): 58-62. Yu Xiangtao, Zhang Jinghua, Du Zuliang. Research on long-term repeatability of quartz flexure accelerometer parameters[J]. Navigation Positioning and Timing, 2014, 1(1): 58-62(in Chinese).
    [9] Yu X T, Zhang L, Guo L R, et al. Identification for temperature model of accelerometer based on proximal SVR and particle swarm optimization algorithms[J]. Journal of Control Theory and Applications, 2012, 10(3): 349-353.
    [10] 于湘涛, 张兰, 郭琳瑞, 等. 基于小波最小二乘支持向量机的加速度计温度建模和补偿[J]. 中国惯性技术学报, 2011, 19(1): 95-98. Yu Xiangtao, Zhang Lan, Guo Linrui, et al. Tempe-rature model-ing and compensation of accelerometer based on least squares wavelet support vector ma-chine[J]. Journal of Chinese Inertial Technology, 2011, 19(1): 95-98(in Chinese).
    [11] 刘东斌, 胡平华, 宋毅龙, 等. 平台式航空、海洋重力仪精密温度控制研究[J]. 导航定位与授时, 2017, 4(4): 30-35. Liu Dongbin, Hu Pinghua, Song Yilong, et al. Research on high-accuracy temperature control for air-borne/marine gravimeter based on inertial stabilized platform[J]. Navigation Positioning and Timing, 2017, 4(4): 30-35(in Chinese).
    [12] GJB 1037A-2004. 单轴摆式伺服线加速度计试验方法[S]. GJB 1037A-2004. Test methods for single-axis pendulous servo linear accelerometers[S].(in Chinese)
    [13] IEEE standard specification format guide and test procedure for linear single-axis, nongyroscopic accelerometers[S]. IEEE STD 1293-1998, Sponsor by Gyro and Accelerometer Panel of the IEEE Aerospace and Electronic Systems Society.
    [14] 李海兵, 朱志刚, 魏宗康, 等. 高精度加速度计分辨率的动态估算方法[J].中国惯性技术学报, 2012, 20(4): 496-500. Li Haibing, Zhu Zhigang, Wei Zongkang, et al. Dynamic estimation method for resolution of high precision accelerometer[J]. Journal of Chinese Inertial Technology, 2012, 20(4): 496-500(in Chinese).
    [15] 何懿才, 廖建平, 赵君辙. 数学摆台法的超低频加速度校准[J]. 计量学报, 2017, 38(4): 424-428. He Yicai, Liao Jianping, Zhao Junzhe. Calibrate of ultra-low frequency acceleration by mathematical pendulum-vibration generator method[J]. Acta Metrological Sinica, 2017, 38(4): 424-428(in Chinese).
    [16] Gabrielson T B. Mechanical-thermal noise in micromachined acoustic and vibration sensors[J]. IEEE Transactions on Electron Devices, 1993, 40(5): 903-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700