Al含量对Fe-22Cr-25Ni含铝奥氏体耐热钢高温抗氧化性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Al-content on High Temperature Oxidation Behavior of Al-containing Austenitic Stainless Steel Fe-22Cr-25Ni
  • 作者:夏焱 ; 王剑 ; 孟浩杰 ; 韩培德
  • 英文作者:XIA Yan;WANG Jian;MENG Haojie;HAN Peide;Technology Center, Shanxi Taiyuan Stainless Steel Co., Ltd.;School of Materials Science and Engineering, Taiyuan University of Technology;
  • 关键词:高温氧化 ; Al2O3奥氏体 ; 耐热钢
  • 英文关键词:high temperature oxidation;;Al2O3;;austenitic;;heat-resistant steel
  • 中文刊名:FSFJ
  • 英文刊名:Corrosion Science and Protection Technology
  • 机构:山西太钢不锈钢股份有限公司技术中心;太原理工大学材料科学与工程学院;
  • 出版日期:2019-03-15
  • 出版单位:腐蚀科学与防护技术
  • 年:2019
  • 期:v.31
  • 基金:山西省自然科学基金(2014011002);; 山西省科技攻关项目(20181101014)~~
  • 语种:中文;
  • 页:FSFJ201902012
  • 页数:7
  • CN:02
  • ISSN:21-1264/TQ
  • 分类号:72-78
摘要
以HR3C合金成分为基础,通过调控Cr、Ni含量和添加1.5%,2.5%和3.5%(质量分数)的Al制备了Fe-22Cr-25Ni型含铝奥氏体耐热钢,并研究了合金的高温抗氧化性能。利用SEM、EDS和XRD对含铝奥氏体钢700、800和900℃氧化后的氧化膜组成、结构进行了表征。结果表明:22Cr-25Ni-2.5Al和22Cr-25Ni-3.5Al含铝奥氏体耐热钢在700和800℃下具有优异的抗高温氧化性能。氧化后表层形成了连续致密的Al_2O_3保护膜,提高了其高温抗氧化性能。3种耐热钢经900℃氧化时形成外层为Cr_2O_3和MnCr_2O_4的复合氧化层,且氧化层下存在Al_2O_3内氧化物和AlN析出相,不能对基体起到有效保护作用。
        A new alumina-forming austenitic stainless steel with excellent high-temperature oxidation resistance is being widely concerned. In this work, the Al-containing austenitic heat-resistant Fe-25 Cr-25 Ni steels were prepared by adjusting the Cr-and Ni-content of the present steel HR3C, while adding1.5%(mass fraction), 2.5% and 3.5%Al respectively. The oxidation behavior of the prepared steels in air at 700, 800 and 900 ℃ respectively was assessed by means of mass change measurement, scanning electron microscopy(SEM) with energy-dispersive spectrum(EDS) and X-ray Diffractometer(XRD). Results show the steels of 22 Cr-25 Ni-2.5 Al and 22 Cr-25 Ni-3.5 Al present excellent oxidation resistance at700 and 800 ℃ with formation of a continuous and compact Al_2O_3 protective scale, which hinders the further oxidation of the base metal and improves its high temperature oxidation resistance. However, at900 ℃ the Al-containing austenitic heat-resistant steels form a scale composed of MnCr_2O_4 and Cr_2O_3 with internal oxidation zone composed of oxides and nitrides of Al, which presented not effective protectiveness for the substrate.
引文
[1] Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-su‐percritical coal power plants-steamside oxidation[J]. J. Mater. Eng.Perform., 2006, 15:255
    [2] Chai G C, Bostr?m M, Olaison M, et al. Creep and LCF behaviors of newly developed advanced heat resistant austenitic stainless steel for A-USC[J]. Proc. Eng., 2013, 55:232
    [3] Dudziak T,?ukaszewicz M, Simms N, et al. Steam oxidation of TP347HFG, Super 304H and HR3C-analysis of significance of steam flowrate and specimen surface finish[J]. Corros. Eng. Sci.Technol., 2015, 50:272
    [4] Li Y H, Wang S Z, Li X D, et al. Corrosion of an austenitic heat-re‐sistant steel HR3C in high-temperature steam and supercritical wa‐ter[J]. Adv. Mater. Res., 2014, 908:67
    [5] Yue Z W, Fu M, Wang X G, et al. Effect of shot peening on the oxi‐dation resistance of TP304H and HR3C steels in water vapor[J].Oxid. Met., 2012, 77:17
    [6] Vujic S, Sandstr?m R, Sommitsch C. Precipitation evolution and creep strength modelling of 25Cr20NiNbN austenitic steel[J]. Ma‐ter. High Temp., 2015, 32:607
    [7] Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-form‐ing austenitic stainless steels[J]. Science, 2007, 316:433
    [8] Muralidharan G, Yamamoto Y, Brady M P, et al. Development of cast alumina-forming austenitic stainless steels[J]. JOM, 2016, 68:2803
    [9] Xu X Q, Zhang X F, Chen G L, et al. Improvement of high-tempera‐ture oxidation resistance and strength in alumina-forming austenitic stainless steels[J]. Mater. Lett., 2011, 65:3285
    [10] Zhou D Q, Zhao W X, Mao H H, et al. Precipitate characteristics and their effects on the high-temperature creep resistance of alumi‐na-forming austenitic stainless steels[J]. Mater. Sci. Eng., 2015,A622:91
    [11] Zhao B B, Chang K C, Fan J F, et al. Annealing effects on precipi‐tation and high-temperature properties of a Cu-containing aluminaforming austenitic steel[J]. Mater. Lett., 2016, 176:83
    [12] Wu X D, Wu G, Zhu J J, et al. High temperature oxidation resis‐tance of aluminum-containing austenitic heat-resisting steel[J].Heat Treat. Met., 2016, 41(8):1(吴晓东,吴刚,朱晶晶等.含铝奥氏体耐热钢的高温抗氧化性能[J].金属热处理, 2016, 41(8):1)
    [13] Liu Y X, Cheng C Q, Shang J L, et al. Oxidation behavior of highentropy alloys Alx CoCrFeNi(x=0.15, 0.4)in supercritical water and comparison with HR3C steel[J]. Trans. Nonferrous Met. Soc.China, 2015, 25:1341
    [14] Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use[J]. JOM, 2008, 60(7):12
    [15] Brady M P, Yamamoto Y, Pint B A, et al. On the loss of protective scale formation in creep-resistant, alumina-forming austenitic stainless steels at 900℃in air[J]. Mater. Sci. Forum, 2008, 595-598:725
    [16] Elger R, Pettersson R. Effect of addition of 4%Al on the high tem‐perature oxidation and nitridation of a 20Cr-25Ni austenitic stain‐less steel[J]. Oxid. Met., 2014, 82:469
    [17] Gaskell D R. Introduction to the Thermodynamics of Materials[M]. 4th Ed. New York:Taylor&Francis, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700