水润滑条件下直线动密封力学特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Frictional Properties of Linear Motion Seals Under Water Lubrication
  • 作者:杨友胜 ; 唐顺军 ; 司传岭
  • 英文作者:YANG You-Sheng;TANG Shun-Jun;SI Chuan-Ling;College of Engineering,Ocean University.of China;Science and Technology on Underwater Vehicle Technology of Harbin Engineering University;
  • 关键词:水润滑 ; 格莱圈 ; 直线动密封 ; 最大米塞斯应力 ; 摩擦力
  • 英文关键词:water lubrication;;Glyd-ring;;linear motion seal;;maximum von mises;;friction force
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学工程学院;哈尔滨工程大学水下机器人技术重点实验室;
  • 出版日期:2018-12-10
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2018
  • 期:v.48;No.289
  • 基金:国家自然科学基金项目(51275495;51475197);; 山东省重点研发计划项目(2017GGX30106);; 山东省自然科学基金项目(ZR2018MEE023);; 中央高校基本科研业务费专项(201562009);; 水下机器人技术重点实验室研究基金项目(SXJQR2017KFJJ04)资助~~
  • 语种:中文;
  • 页:QDHY2018S2019
  • 页数:8
  • CN:S2
  • ISSN:37-1414/P
  • 分类号:152-159
摘要
直线动密封是水下直线往复作业装备的关键技术之一,其性能决定着系统的静动态性能、可靠性及寿命等。以格莱圈为研究对象,建立了其物理模型,研究预压缩率及工作压力对最大米塞斯应力的影响。搭建了直线动密封特性试验平台,研究了在不同运动速度、不同单/双侧密封压力下的格莱圈摩擦力特性。结果表明:(1)工作压力及预压缩率对格莱圈最大米塞斯应力有较大影响,最大米塞斯应力随预压缩率及工作压力的增加而增大;(2)在工作压力一定时,格莱圈摩擦力随往复运动速度的增加而减小;在运动速度一定时,摩擦力随工作压力的增加而增大;(3)格莱圈两侧受压时的最大米塞斯应力、摩擦力均小于单侧受压时的工况。研究成果为水下往复作业装备的直线动密封的分析与设计提供依据。
        The linear motion sealing,which exerts great effects on the static and dynamic performances,reliability,life span and etc.,is a key technology of the underwater linear reciprocating equipment.This research is focused on the frictional properties of linear motion Glyd-ring under water lubrication.A physical model is proposed to study the effects of pre-compression ratio and working pressure on the maximum Von Mises stress numerically.A test bench is developed and experiments have been carried out to investigate the friction force of Glyd-ring under different reciprocating speeds,different sealing pressures on one or both seal sides.The results show that:(1)The working pressure and pre-compression ratio have a great effect on the maximum Von Mises stress.The maximum Von Mises stress increases with the increase of the pre-compression ratio and working pressure.(2)When the pressure is kept constant,the friction force of Glyd-ring decreases with the increase of the reciprocating speed,and when the moving speed is constant,the friction force increases with the increase of the working pressure.(3)The maximum Mises stress and friction force of the Glyd-ring under both sides with pressures are smaller than one side with pressures.(4)With the pressure exerted on one side or different pressure exerted on both sides,the most vulnerable position is the square ring and the groove chamfer.With the same pressure exerted on both sides,the most vulnerable position is the contact surface between the square ring and the O-ring.The research results provide a basis for the analysis and design of the linear motion seal of underwater reciprocating equipment.
引文
[1]彭旭东,王玉明,黄兴,等.密封技术的现状与发展趋势[J].液压气动与密封,2009(4):4-11.PENG Xudong,WANG Yuming,HUANG Xing,et al.Present situation and development trend of sealing technology[J].Hydraulic Pneumatic and Sealed.2009(4):4-11.
    [2]蔡仁良等.流体密封技术[M].北京:化学工业出版社,2013.5.CAI Renliang,et al.Fluid Seal Technology[M].BeiJing:Chemical Industry Press.2013.5.
    [3] Schmidt T,Andre M,Poll G.A transient 2D-finite-element approach for the simulation of mixed lubrication effects of reciprocating hydraulic rod seals[J].Tribology International.2010,43(10):1775-1785.
    [4] Heipl O,Murrenhoff H.Friction of hydraulic rod seals at high velocities[J].Tribology International.2015(85):66-73.
    [5] Bower M V.Design and analysis of seals for extended service life[N],NASA/ASEE Summer Faculty Fellowship Program N94-24408,1994.
    [6]吴琼,索双富,刘向峰,等.丁腈橡胶O形圈的静密封及微动密封特性[J].润滑与密封,2012(11):5-21.WU Qiong,SUO Shuangfu,LIU Xiangfeng,et al.The static seal and the micro-dynamic sealing characteristics of the rubber O-ring[J].Lubrication and Sealing,2012(11):5-21.
    [7]吴琼,索双富,廖传军,等.丁腈橡胶O形圈往复密封性能实验研究[J].润滑与密封,2012(2):28-33.WU Qiong,SUO Shuangfu,LIAO Chuanjun,et al.Experimental Study on Reciprocating Sealing Performance of Rubber O-ring[J].Lubrication and Sealing,2012(2):28-33.
    [8]王成刚,肖健,刘慧,等.格莱圈密封性能非线性有限元分析[J],武汉工程大学学报,2014(2):42-47.WANG Chenggang,XIAO Jian,LIU Hui,et al.Nonlinear finite element analysis of grace circle sealing performance[J].Journal of Wuhan Engineering University,2014(2):42-47.
    [9]薛志全.航空液压作动器往复密封机理分析[D].杭州:浙江大学,2016.XUE Zhiquan.Analysis on Reciprocating Sealing Mechanism of Aviation Hydraulic Actuator[D].Hangzhou:Zhejiang University,2016.
    [10]赵河明,韩宁.动态压力下旋转动密封结构的有限元分析[J].现代制造工程,2014(10):81-85.ZHAO Heming,HAN Ning.Finite element analysis of rotating dynamic seal under dynamic pressure[J].Modern Manufacturing Engineering,2014(10):81-85.
    [11]胡殿印,王荣桥.橡胶O形圈密封结构的有限元分析[J].北京航空航天大学学报,2005,31(2):255-260.HU Dianyin,WANG Rongqiao.Finite element analysis of rubber O-ring sealing structure[J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(2):255-260.
    [12]韩彬,鲁金忠,李传君,等.O形橡胶密封圈的热应力耦合分析[J].润滑与密封,2015(1):58-62.HAN Bin,LU Jinzhong,LI Chuanjun,et al.O-shaped rubber seal ring thermal stress coupling analysis[J].Lubrication and Sealing,2015(1):58-62.
    [13]魏泳涛,于建华.橡胶有限元分析之研究[J].四川联合大学学报(工程科学版),1997(5):78-84.WEI Yongtao,YU Jianhua.Study on finite element analysis of rubber[J].Journal of Sichuan Union University(Engineering Science Edition),1997(5):78-84.
    [14]喻九阳,高九阳,王成刚,等.机械振打器活塞杆处O形圈不同密封结构下的性能分析[J].润滑与密封,2010,35(3):65-68.YU Jiuyang,GAO Jiuyang,WANG Chenggang,et al.Performance analysis of O-rings with different sealing structures at piston rods of mechanical rammers[J].Lubrication and Sealing,2010,35(3):65-68.
    [15]谭晶,杨卫民,丁玉梅,等.O形橡胶密封圈密封性能的有限元分析[J].润滑与密封,2006(9):65-69.TAN Jing,YANG Weimin,DING Yumei,et al.O-shaped rubber seal sealing performance of the finite element analysis[J].Lubrication and Sealing,2006(9):65-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700