钙质砂一维冲击响应及吸能特性试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-dimensional impact responses and energy absorption of calcareous sand
  • 作者:魏久淇 ; 吕亚茹 ; 刘国权 ; 张磊 ; 李磊
  • 英文作者:WEI Jiu-qi;Lü Ya-ru;LIU Guo-quan;ZHANG Lei;LI Lei;State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA;National Defense Engineering Institute, Academy of Military Science of PLA;Henan Key Laboratory of Special Protective Materials;College of Mechanics and Materials, Hohai University;Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology;
  • 关键词:钙质砂 ; 分离式霍普金森压杆试验 ; 应力波 ; 冲击响应 ; 吸能特性
  • 英文关键词:calcareous sand;;test of split Hopkinson pressure bar;;stress wave;;impact response;;energy absorption
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:陆军工程大学防灾减灾爆炸冲击国家重点实验室;军事科学院国防工程研究院;河南省特种防护材料重点实验室;河海大学力学与材料学院;香港科技大学土木与环境学院;
  • 出版日期:2018-07-17 09:12
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.298
  • 基金:国家自然科学基金(No.51779264);; 江苏省自然科学基金(No.BK20171399);; 2016年“香江学者计划”资助(No.2016QNRC001);; 青年人才托举工程(No.17-JCJQ-QT-021);; 河南省科技创新人才计划(No.154200510028)~~
  • 语种:中文;
  • 页:YTLX201901017
  • 页数:9
  • CN:01
  • ISSN:42-1199/O3
  • 分类号:198-205+213
摘要
钙质砂为海相沉积的多孔介质,是防护工程分配层的理想填充材料。利用改进的铝制分离式霍普金森压杆(split Hopkinsonpressurebar,简称SHPB),分别对颗粒级配以及相对密实度相同的南海钙质砂和福建石英砂进行了83组一维冲击试验,得到了应力波透射率、冲击响应和吸能效率曲线,分析了应变率、相对密实度和含水率对两种砂冲击特性的影响。结果表明,相同的荷载和边界条件下,钙质砂的刚度仅为石英砂的1/10。由于内孔隙的存在,钙质砂对冲击波的衰减作用大于石英砂,在承载性能允许的情况下,适当减小相对密实度、增加含水率可有效提高分配层消能效果。
        Calcareous sand, as a porous medium deposited in marine environment, is an ideal material used for a protective cushion. A total of 83 SHPB tests were conducted on calcareous sand sampled from South China Sea and silica sands bought from Fujian Province with identical grain size distributions and relative densities. The curves of stress wave transmittance, shock response and energy absorption efficiency were obtained. The effects of strain rate, relative densities and moisture content on the impact characteristics of two kinds of sand were analyzed. It is found that the stiffness of calcareous sand is only 10% that of silica sand under the same load and boundary conditions. Because of the existence of inner pore, the attenuation of shock wave in calcareous sand is greater than that in quartz sand. Within the bearing capacity, reducing relative density and increasing water content can effectively improve energy dissipation effect of protective cushion of calcareous sand.
引文
[1]汪稔,宋朝景,赵焕庭,等.南沙群岛珊瑚礁工程地质[M].北京:科学出版社,1997.WANG Ren,SONG Chao-jing,ZHAO Huan-ting,et al.Engineering geology of coral reef in Spratly Islands[M].Beijing:Science Press,1997.
    [2]任玉宾,王胤,杨庆.颗粒级配与形状对钙质砂渗透性的影响[J].岩土力学,2018,39(2):491-497.REN Yu-bin,WANG Yin,YANG Qing.Effects of particle size distribution and shape on permeability of calcareous sand[J].Rock and Soil Mechanics,2018,39(2):491-497.
    [3]YU H,SUN Z,TANG C.Physical and mechanical properties of coral sand in the Nansha Islands[J].Marine Science Bulletin,2006,8(2):31-39.
    [4]刘崇权,汪稔.钙质砂物理力学性质初探[J].岩土力学,1998,19(1):32-37.LIU Chong-quan,WANG Ren.Preliminary study on physical and mechanical properties of calcareous sand[J].Rock and Soil Mechanics,1998,19(1):32-39.
    [5]张家铭.钙质砂基本力学性质及颗粒破碎影响研究[D].武汉:中国科学院武汉岩土力学研究所,2004.ZHANG Jia-ming.Study on basic mechanical properties and particle crushing of calcareous sand[D].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2004.
    [6]汪轶群,洪义,国振,等.南海钙质砂宏细观破碎力学特性[J].岩土力学,2018,39(1):199-215.WANG Yi-qun,HONG Yi,GUO Zhen,et al.Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J].Rock and Soil Mechanics,2018,39(1):199-215.
    [7]LüY,LI F,LIU Y,et al.Comparative study of coral sand and silica sand in creep under general stress states[J].Canadian Geotechnical Journal,2017,54(19):23-32.
    [8]MORRISON M J,MCINTYRE P D,SAULTS D P.Laboratory test results for carbonate soils from offshore Africa[C]//Proceedings of International Conference on Calcareous Sediments.Perth:[s.n.],1988:109-118.
    [9]KAGGWA W S,POULOS H G,CATER J P.Response of carbonate sediments under cyclic triaxial test condition[C]//Proceedings International Conference on Calcareous Sediments.Perth:[s.n.],1988,97-107.
    [10]KAGGWA W S,BOOKER J R.Analysis of behavior of calcareous sand under cyclic Loading[R].Sydney:University of Sydney,1990.
    [11]KNODEL P C,AL-DOURI R H,POULOS H G.Static and cyclic direct shear tests on carbonate sands[J].Geotechnical Testing Journal,1992,15(2):138-157.
    [12]SHARMA S S,FAHEY M.Degradation of stiffness of cemented calcareous soil in cyclic triaxial tests[J].Journal of Geotechnical&Geoenvironmental Engineering,2003,129(7):619-629.
    [13]刘汉龙,胡鼎,肖杨,等.钙质砂动力液化特性的试验研究[J].防灾减灾工程学报,2015(6):707-711.LIU Han-long,HU Ding,XIAO Yang,et al.Test study on dynamic liquefaction characteristics of calcareous sand[J].Journal of Disaster Prevention and Mitigation Engineering,2015(6):707-711.
    [14]虞海珍,汪稔.钙质砂动强度试验研究[J].岩土力学,1999,20(4):6-11.YU Hai-zhen,WANG Ren.Experimental study on dynamic strength of calcareous sand[J].Rock and Soil Mechanics,1999,20(4):6-11.
    [15]徐学勇,汪稔,王新志,等.饱和钙质砂爆炸响应动力特性试验研究[J].岩土力学,2012,33(10):402-414.XU Xue-yong,WANG Ren,WANG Xin-zhi,et al.Experimental study of dynamic behavior of saturated calcareous sand due to explosion[J].Rock and Soil Mechanics,2012,33(10):402-414.
    [16]XIAO Y,LIU H,XIAO P,et al.Fractal crushing of carbonate sands under impact loading[J].Géotechnique Letters,2016,6(3):1-6.
    [17]SONG B,CHEN W,LUK V.Impact compressive response of dry sand[J].Mechanics of Materials,2009,41(6):777-785.
    [18]MARTIN B E,KABIR M E,CHEN W.Undrained high-pressure and high strain-rate response of dry sand under triaxial loading[J].International Journal of Impact Engineering,2013,54(4):51-63.
    [19]OMIDVAR M,ISKANDER M,BLESS S.Stress-strain behavior of sand at high strain rates[J].International Journal of Impact Engineering,2012,49(2):192-213.
    [20]MARTIN B E,CHEN W,SONG B,et al.Moisture effects on the high strain-rate behavior of sand[J].Mechanics of Materials,2009,41(6):786-798.
    [21]LUO H,LU H,COOPER W L,et al.Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates[J].Experimental Mechanics,2011,51(9):1499-1510.
    [22]LU H,LUO H,COOPER W L,et al.Effect of particle size on the compressive behavior of dry sand under confinement at high strain rates[M].New York:Springer,2013:523-530.
    [23]张艳萍,陈育民,王维国.冲击荷载作用下干砂动力特性试验研究[J].地震工程学报,2015,37(增刊2):131-136.ZHANG Yan-ping,CHEN Yu-ming,WANG Wei-guo.Test study on the dynamic behavior of dry sands subjected to impact loading[J].China Earthquake Engineering Journal,2015,37(Supp.2):131-136.
    [24]XIA K W,JAFARI M,KANOPOULOS P P,et al.Constitutive modelling of soils under high strain rates:theoretical,numerical,and experimental results[R].[S.l.]:[s.n.],2015.
    [25]MILTS J,GRUENBAUM G.Evaluation of cushion properties of plastic foams compressive measurements[J].Polymer Engineering Science,1981,21(15):1010-1014.
    [26]卢芳云,陈荣,林玉亮,等.霍普金森杆实验技术[M].北京:科学出版社,2013.LU Fang-yun,CHEN Rong,LIN Yu-Liang,et al.Hopkinson bar techniques[M].Beijing:Science Press,2013.
    [27]DAVIES E D H,HUNTER S C.The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J].Journal of the Mechanics&Physics of Solids,1963,11(3):155-179.
    [28]SONG B,CHEN W.Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J].Experimental Mechanics,2004,44(3):300-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700