西藏灵菇发酵乳胞外多糖的流变学特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rheological Properties of Exopolysaccharide Produced by Tibetan Kefir
  • 作者:陈志娜 ; 杨希娟 ; 师俊玲
  • 英文作者:CHEN Zhina;YANG Xijuan;SHI Junling;College of Food Science and Engineering, Northwest A&F University;Qinghai Academy of Agriculture and Forestry Sciences;School of Life Sciences, Northwestern Polytechnical University;
  • 关键词:西藏灵菇 ; 胞外多糖 ; 流变学特性 ; 稳态分析 ; 动态振荡剪切分析
  • 英文关键词:Tibetan kefir;;exopolysaccharide;;rheological properties;;steady-state analysis;;dynamic oscillatory shear analysis
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:西北农林科技大学食品科学与工程学院;青海省农林科学院;西北工业大学生命科学学院;
  • 出版日期:2015-08-07 15:57
  • 出版单位:食品科学
  • 年:2016
  • 期:v.37;No.522
  • 基金:国家自然科学基金地区科学基金项目(31260395)
  • 语种:中文;
  • 页:SPKX201605003
  • 页数:5
  • CN:05
  • ISSN:11-2206/TS
  • 分类号:11-15
摘要
以西藏灵菇发酵乳中分离纯化所得胞外多糖为研究对象,对其流变学特性进行了系统研究。结果表明,该胞外多糖的水溶液表现为典型的非牛顿假塑性流体特性,且其流动行为受胞外多糖的质量浓度、pH值、温度、离子种类和浓度的影响,具体表现为:胞外多糖溶液的黏度随胞外多糖质量浓度的升高而增加,质量浓度越高剪切稀释现象越明显;pH 4.0和pH 10.0时胞外多糖溶液黏度明显低于pH 7.0。Na~+可使胞外多糖溶液的黏度显著增大,且Na~+浓度越高,溶液黏度越大;Ca~(2+)可使胞外多糖溶液的黏度明显下降,但其下降幅度与Ca~(2+)浓度无关;温度在10~85℃范围内胞外多糖溶液的黏度变化很小,有很好的耐温性。加入10 mg/mL的该胞外多糖能够明显增加脱脂乳的黏度。
        In this study, the rheological properties of exopolysaccharide(EPS) produced by Tibetan kefir were evaluated. The results showed that the aqueous EPS solution was a typical non-Newtonian pseudoplastic fluid, and its flow behavior was affected by concentration, pH, temperature, cation type and concentration. Specifically, the viscosity of EPS solution increased with its increasing concentration and the shear thinning phenomenon was more obvious. The viscosity of EPS solution at pH 10.0 or pH 4.0 was obviously lower than that at p H 7.0. The addition of Na+ significantly increased the viscosity of EPS solution in a concentration-dependent fashion. However, the viscosity of EPS solution was greatly decreased when Ca~(2+) was added. The viscosity of EPS solution little changed with good temperature resistance at 10–85 ℃. The viscosity of skim milk was significantly increased by adding 10 mg/m L of the EPS.
引文
[1]ZHOU J Z,LIU X L,JIANG H H,et al.Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis[J].Food Microbiology,2009,26(8):770-775.DOI:10.1016/j.fm.2009.04.009.
    [2]FARNWORTH E R.Kefir:a complex probiotic[J].Food Science and Technology Bulletin:Functional Foods,2005,2(1):1-17.DOI:10.1616/1476-2137.13938.
    [3]孟利,张兰威.聚酰胺层析法去除西藏灵菇胞外多糖发酵液中蛋白的研究[J].食品工业科技,2007,28(10):186-189.DOI:10.3969/j.issn.1002-0306.2007.10.058.
    [4]VINDEROLA C G,DUARTE J,THANGAVEL D,etal.Immunomodulating capacity of kefir[J].Journal of Dairy Research,2005,72(2):195-202.DOI:10.1017/S0022029905000828.
    [5]SILVA K R,RODRIGUES S A,XAVIER L,et al.Antimicrobial activity of broth fermented with kefir grains[J].Applied Biochemistry and Biotechnology,2009,152(2):16-25.DOI:10.1007/s12010-008-8303-3.
    [6]RIZK S,KATIA M,ELIAS B,The antiproliferative effect of kefir cell-free fraction on Hu T-102 malignant T lymphocytes[J].Clinical Lymphoma,Myeloma&Leukemia,2009,9(Suppl 3):198-203.DOI:10.3816/CLM.2009.s.012.
    [7]QIN Q Q,XIA B S,XIONG Y,et al.Structural characterization of the exopolysaccharide produced by Streptococcus thermophilus 05-34and its in situ application in yogurt[J].Journal of Food Science,2011,76(9):C1226-C1230.DOI:10.1111/j.1750-3841.2011.02397.x.
    [8]JIANG S J,QIAN F,REN X H,et al.Studies on the preliminary characterization of a novel exopolysaccharide produced by Streptococcus thermophilus strain from Tibetan kefir grain[J].Advanced Materials Research,2013,690/693:1374-1377.DOI:10.4028/www.scientific.net/AMR.690-693.1374.
    [9]AHMED Z,WANG Y P,ANJUM N,et al.Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3isolated from Tibet kefir-Part II[J].Food Hydrocolloids,2013,30(1):343-350.DOI:10.1016/j.foodhyd.2012.06.009.
    [10]毛志勇,姜淑娟,钱方,等.一株西藏灵菇嗜热链球菌产胞外多糖的流变学特性[J].食品与机械,2012,28(1):32-34.DOI:10.3969/j.issn.1003-5788.2012.01.007.
    [11]WANG Y P,LI C,LIU P,et al.Physical characterization of exopoloysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet kefir[J].Carbohydrate Polymers,2010,82(3):895-903.DOI:10.1016/j.carbpol.2010.06.013.
    [12]WANG Y P,AHMED Z,WU F,et al.Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciensZ W 3 isolated from Tibetke fir[J].International Journal of Biological Macromolecules,2008,43(3):283-288.DOI:10.1016/j.ijbiomac.2008.06.011.
    [13]MAEDA H,ZHU X,SUZUKI S,et al.Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2BT[J].Journal of Agricultural and Food Chemistry,2004,52(17):5533-5538.DOI:10.1021/jf049617g.
    [14]CHEN Z N,SHI J L,YANG X J,et al.Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation[J].International Dairy Journal,2015,43:15-21.DOI:10.1016/j.idairyj.2014.10.004.
    [15]任明,郝筱诗,叶伶艳,等.人参多糖的提取分离及其体外抗肿瘤作用[J].吉林大学学报(医学版),2014,40(4):812-815.DOI:10.13481/j.1671-587x.20140423.
    [16]张铁华,张春红,刘迪茹,等.一株嗜热链球菌ST1的产胞外多糖流变学特性[J].食品科学,2011,32(1):62-65.DOI:10.3969/j.issn.1003-5788.2012.01.007.
    [17]张岩春,戴智勇,刘跃辉,等.一株融合菌株G23产胞外多糖的流变学特性[J].中国乳品工业,2011,39(2):21-23.DOI:10.3969/j.issn.1001-2230.2011.02.006.
    [18]ADELI M,SAMAVATI V.Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit[J].International Journal of Biological Macromolecules,2015,72:580-587.DOI:10.1016/j.ijbiomac.2014.08.047.
    [19]VARDHANABHUTI B,IKEDA S.Isolation and characterization of hydrocolloids from monoi(Cissampelos pareira)leaves[J].Food Hydrocolloids,2006,20:88 5-891.DOI:10.1016/j.foodhyd.2005.09.002.
    [20]杨贞耐,张雪.乳酸菌胞外多糖的流变学特性和分子结构修饰[J].食品科学,2007,28(12):535-538.DOI:10.3321/j.issn:1002-6630.2007.12.128.
    [21]STEFFE J F.Rheological methods in food process engineering[M].East Lansing,MI:Freeman Press,1996:328-331.
    [22]MORRIS E R.Shear-thinning of‘random coil’polysaccharides:characteri-sation by two parameters from a simple linear plot[J].Carbohydrate Polymers,1990,13(1):85-96.DOI:10.1016/0144-8617(90)90053-U.
    [23]RUMPAGAPRN P,KAUR A,CAMPANELLA O H,et al.Heat and p H stability of alkali-extractable corn arabinoxylan and its xylanasehydrolyzate and their viscosity behavior[J].Journal of Food Science,2012,71(1):H23-H30.DOI:10.1111/j.1750-3841.2011.02482.x.
    [24]GOYCOOLEA F M,MORRIS E R,RICHARDSON R K,et al.Solution rheology of mesquite gum in comparison with gum arabic[J].Carbohydrate Polymers,1995,27(1):37-45.DOI:10.1016/0144-8617(95)00031-2.
    [25]KALE M S,YADAV M P,HICKS K B,et al.Concentration and shear rate dependence of solution viscosity for arabinoxylans from different sources[J].Food Hydrocolloids,2015,47:178-183.DOI:10.1016/j.foodhyd.2015.01.012.
    [26]MEDINA-TORRES L,de la FUENTE BRITO E B,TORRESTIANASANCHEZ B,et al.Rheological properties of the mucilage gum(Opuntia ficus indica)[J].Food Hydrocolloids,2000,14(5):417-424.DOI:10.1016/S0268-005X(00)00015-1.
    [27]CHEN R H,CHEN W Y.Rheological properties of the water-soluble mucilage of a green laver,Monostroma nitidium[J].Journal of Applied Phycology,2001,13(6):481-488.DOI:10.1023/A:1012580604417.
    [28]XIU A H,ZHOU M Y,ZHU B,et al.Rheological properties of Salecan as a new source of thickening agent[J].Food Hydrocolloids,2011,25(7):1719-1725.DOI:10.1016/j.foodhyd.2011.03.013.
    [29]高春燕,卢跃红,田呈瑞.枸杞多糖流变学特性研究[J].食品科学,2009,30(21):28-31.DOI:10.3321/j.issn:1002-6630.2009.21.005.
    [30]XU L,DONG M Z,GONG H J,et al.Effects of inorganic cations on the rheology of aqueous welan,xanthan,gellan solutions and their mixtures[J].Carbohydrate Polymers,2015,121:147-154.DOI:10.1016/j.carbpol.2014.12.030.
    [31]JIN W G,WU H T,LI X S,et al.Microstructure and intermolecular forces involved in gelation-like protein hydrolysate from neutrase-treated male gonad of scallop(Patinopecten yessoensis)[J].Food Hydrocolloids,2014,40:245-253.DOI:10.1016/j.foodhyd.2014.03.004.
    [32]SAMANTA A,BERA A,OJHA K,et al.Effects of alkali,salts,and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions[J].Journal of Chemical&Engineering Data,2010,55:4315-4322.DOI:10.1021/je100458a.
    [33]SWORN G.Xanthan gum[M]//PHILLIPS G O,WILLIAMS P A.Handbook of hydrocolloids.Cambridge:Woodhead Publishing Limited,2000:103-116.
    [34]ROCKS J K.Xanthan gum[J].Food Technology,1971,25:476-483.
    [35]WIELINGA W C.Galactomannans[M]//PHILLIPS G O,WILLIAMS P A.Handbook of hydrocolloids.Cambridge:Woodhead Publishing Limited,2000:137-154.
    [36]WU Y,CUI S W,WU J H,et al.Structure characteristics and rheological properties of acidic polysaccharide from boat-fruited sterculia seeds[J].Carbohydrate Polymers,2012,88(3):926-930.DOI:10.1016/j.carbpol.2012.01.035.
    [37]SENGKHAMPARN N,SAGIS L M C,de VRIES R,etal.Physicochemical properties of pectins from okra(Abelmoschus esculentus(L.)Moench)[J].Food Hydrocolloids,2010,24(1):35-41.DOI:10.1016/j.foodhyd.2009.07.007.
    [38]GORRET N,RENARD C M G C,FAMELART M H,et al.Rheological characterization of the EPS produced by P.acidipropionici on milk microfiltrate[J].Carbohydrate Polymers,2003,51(2):149-158.DOI:10.1016/S0144-8617(02)00141-8.
    [39]RUAS-MADIEDO P,TUINIER R,KANNING M,et al.Role of exopolysaccharides produced by Lactococcus lactis subsp.cremoris on the viscosity of fermented milks[J].International Dairy Journal,2002,12:689-695.DOI:10.1016/S0958-6946(01)00161-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700