“三探”技术在顶板高压低渗水形成机理分析中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on formation mechanism of roof water with high pressure and low permeability by overall technology of geophysical exploration &drilling and geochemical exploration
  • 作者:姜鹏 ; 陈清通 ; 邱浩
  • 英文作者:JIANG Peng;CHEN Qingtong;QIU Hao;School of Resources and Safety Engineering,China University of Mining and Technology(Beijing);Mine Safety Technology Branch,China Coal Research Institute;State Key Laboratory of Coal Mining and Clean Utilization;
  • 关键词:顶板水害 ; 高压低渗 ; “三探”一体化技术 ; 断层带
  • 英文关键词:roof water disaster;;high pressure and low permeability;;overall technology of geophysical exploration,drilling and geochemical exploration;;fault zone
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:中国矿业大学(北京)资源与安全工程学院;煤炭科学技术研究院有限公司安全分院;煤炭资源高效开采与洁净利用国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.535
  • 基金:国家科技重大专项资助项目(2016ZX05045001-004);; 国家自然科学基金资助项目(51674142)
  • 语种:中文;
  • 页:MTKJ201906031
  • 页数:8
  • CN:06
  • ISSN:11-2402/TD
  • 分类号:210-217
摘要
为弄清掘进巷道顶板高压低渗水的形成机理,以物探、钻探及化探一体化技术为辅助手段,通过物探探测岩层富水性、钻探验证富水区情况及放水试验、化探分析含水层水化学特征,结合固-液-气三相耦合特征对顶板高压低渗水形成机理进行了研究。研究结果表明:顶板岩层岩性为软硬交替的岩层组合形式,利于顶板含水层水的赋存,且上下含水层之间难以越层补给;断层带的影响改变区域应力场的分布,破坏了岩体原渗流场与应力场的平衡状态,导致岩体发生变形,岩体破碎度增加、岩体裂隙变大,使断层带区域具有更好的储水能力及地下水渗透性;由于岩体是由固相、液相、气相三部分交织组成的多相物质,使得顶板高压水压、气压及高差重力协同作用下形成混合压力,通过工程实例对"三探"一体化技术的有效应用,得出的机理可以对煤矿水害进行有效预测。
        In order to obtain the formation mechanism of high pressure and low water permeability in coal seam roof,the overall technology of geophysical exploration,drilling and geochemical exploration was proposed as an auxiliary mean,and the solid-liquid-gas three-phase coupling characteristics were studied.The results show that the top rock strata lithology is a combination of soft and hard alternating rock layers,which is conducive to the occurrence of the top water in the aquifer,and it is difficult to replenish between the upper and lower aquifers; the influence of fault zone changed the distribution of the regional stress field and destroyed the equilibrium state between the original seepage field and stress field of the rock mass,which led to the deformation of the rock mass,increased the fragmentation of the rock mass and large rock mass fissure,resulting in a fault zone with better water storage capacity and groundwater permeability; because the rock mass is a multi-phase material composed of solid,liquid and gas phase,it is concluded that the high pressure in the roof is the mixing pressure formed by the synergy of water pressure,air pressure and high differential gravity. Through the engineering examples,the " three exploration" overall technology has been effectively applied to determine the importance of mine water damage prediction.
引文
[1]董书宁.对中国煤矿水害频发的几个关键科学问题的探讨[J].煤炭学报,2010,35(1):66-71.DONG Shuning.Some key scientific problems on water hazards frequently happened in China’s coalmines[J].Journal of China Coal Society,2010,35(1):66-71.
    [2]武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(5):795-805.WU Qiang.Progress、problems and prospects of prevention and control technology of mine water and reutilization in China[J].Journal of China Coal Society,2014,39(5):795-805.
    [3]张耀辉,张海波.矿井防治水技术研究现状及展望[J].煤矿安全,2016,47(4):195-198.ZHANG Yaohui,ZHANG Haibo.Researchstatus and outlook of mine water prevention and control technology[J].Safety in Coal Mines,2016,47(4):195-198.
    [4]蒋建华,黄采伦,曹运江.煤矿水害隐患探测方法与应用研究[J].北华大学学报:自然科学版,2012,13(4):488-492.JIAGN Jianhua,HUANG Cailun,CAOYunjiang.Application study on detection methods in hidden water disaster in coal mine[J].Journal of Beihua University:Natural science,2012,13(4):488-492.
    [5]张志龙,高延法,武强,等.魏思浅谈矿井水害立体防治技术体系[J].煤炭学报,2013,38(3):378-383.ZHAGN Zhilong,GAO Yanfa,WU Qiang,et al.Discussion on the technical system of solid prevention and control on mine flooding[J].Journal of China Coal society,2013,38(3):378-383.
    [6]孟国胜,李北海.马脊梁煤矿综采工作面综合防治水技术[J].煤炭科学技术,2017,41(S1):22-25.MENG Guosheng,LI Beihai.Technology of comprehensive water prevention and control in fully mechanized mining face of Majiliang Mine[J].Coal Science and Technology,2017,41(S1):22-25.
    [7]侯文高,曹始友,高旭波.新安煤矿首采工作面顶板岩层富水性探测及涌水量评价[J].中国矿业,2016,25(S2):270-272.HOU Wengao,CAO Shiyou,GAO Xubo.Water detection and water inflow evaluation of first coalface roof in Xin ancoal mine[J].China Mining Magazine,2016,25(S2):270-272.
    [8]范涛,李文刚,王鹏,等.瞬变电磁拟MT深度反演方法精细解释煤矿岩层富水性研究[J].煤炭学报,2013,38(S1):130-135.FAN Tao,LI Wengang,WANG Peng,et al.Research on fine interpretation for water containment of coal mine rock strata by MT imitated TEM depth inversion method[J].Journal of China Coal Society,2013,38(S1):130-135.
    [9]吴有信,尹金柱.含水层富水性分布的瞬变电磁法探测实例[J].工程地球物理学报,2012,9(6):743-749.WU Youxin,YIN Jinzhu.Application of transient electromagnetic method to aquifer in water abundance areas[J].Chinese Journal of Engineering Geophysics,2012,9(6):743-749.
    [10]梁庆华.矿井瞬变电磁法在煤矿中的探测方法及异常特征分析[J].矿业安全与环保,2015,42(2):72-75.LIANG Qinghua.Detection method and abnormal characteristics analysis of mine transient electromagnetic technique in coal mine[J].Mining Safety&Environmental Protection,2015,42(2):72-75.
    [11]李宏杰.瞬变电磁探测技术在煤矿防治水中的应用[J].煤矿安全,2013,44(4):159-161.LI Hongjie.Application of transient electromagnetic method in mine water prevention and control[J].Safety in Coal mines,2013,44(4):159-161.
    [12]王恩营,李锐,刘仰光,等.井下直流电法超前探测低阻区水与瓦斯视电阻率响应分析[J].煤矿安全,2018,49(3):168-171.WANG Enying,LI Rui,LIU Yangguang,et al.Analysis of apparent resistivity response on water and gas in low resistivity zone by underground DC advance method[J].Safety in Coal Mines,2018,49(3):168-171.
    [13]丁后稳,杜少能.网络并行电法在新集二矿1煤底板灰岩富水性探测中的应用[J].煤炭工程,2013,18(4):26-28.DING Houwen,DU Shaoneng.Application of network parallel electrical method in exploring watery of No.1 coal seam floor limestone in Xinji No.2 Mine[J].Coal Engineering,2013,18(4):26-28.
    [14]董书宁,靳德武,冯宏.煤矿防治水实用技术及装备[J].煤炭科学技术,2008,36(3):8-11.DONG Shuning,JIN Dewu,FENG Hong.Practical technology and equipment for mine water prevention and control[J].Coal Science and Technology,2008,36(3):8-11.
    [15]程建远,金丹,覃思.煤矿地质保障中地球物理探测技术面临的挑战[J].煤炭科学技术,2013,41(9):112-116.CHEN Jianyuan,JIN Dan,QIN Si.Challenges faced by geophysical detection technology in mine geological guarantee system[J].Coal Science and Technology,2013,41(9):112-116.
    [16]邱占林,陈万煌,鲍道亮,等.多种物探技术联合探测矿井水害[J].矿业安全与环保,2016,43(4):60-63.QIU Zhanlin,CHEN Wanhuang,BAO Daoliang,et al.Combined detection of mine water disasters with various geophysical prospecting techniques[J].Mining Safety&Environmental Protection,2016,43(4):60-63.
    [17]卫文学,卢新明,施龙青.矿井出水点多水源判别方法[J].煤炭学报,2010,35(5):811-815.WEI Wenxue,LU Xinming,SHI Longqing.Identification method of multi-water source of Mine water inrush[J].Journal of China Coal society,2010,35(5):811-815.
    [18]刘峰.矿井水害水源的水文地球化学探测技术[J].煤田地质与勘探,2007,35(4):62-64.LIU Feng.Hydro-geochemistry survey technology of mine groundwater hazard source[J].Coal Geology&Exploration,2007,35(4):62-64.
    [19]李宏杰,陈清通,牟义.巨厚低渗含水层下厚煤层顶板水害机理与防治[J].煤炭科学技术,2014,42(10):28-31.LI Hongjie,CHEN Qingtong,MOU Yi.Research onprevention and mechanism of roof water inrush under low permeability aquifer for thick coal seam[J].Coal Science and Technology,2014,42(10):28-31.
    [20]张荣财,姜鹏,黎灵,等.瞬变电磁技术在探测断层带影响下顶板富水性的应用[J].中国煤炭,2017,43(7):44-48.ZHANG Rongcai,JIANG Peng,LI Ling,et al.Application of transient electromagnetic technique to analyze the water-rich roof under the influence of fault structure[J].China Coal,2017,43(7):44-48.
    [21]王经明,董书宁,吕玲,等.采矿对断层的扰动及水文地质效应[J].煤炭学报,1997,22(4):361-365.WANG Jingming,DONG Shuning,LYU Ling,et al.Mining disturbance on faults in panel and the hydrogeological effect[J].Journal of China Coal Society,1997,22(4):361-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700