硅橡胶基电流变弹性体的动态粘弹性及非线性本构模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The viscoelastic properties and nonlinear model of silicone rubber-based electrorheological elastomer
  • 作者:张梓琦 ; 马宁 ; 王奇 ; 钮晨光 ; 董旭峰
  • 英文作者:ZHANG Ziqi;MA Ning;WANG Qi;NIU Chenguang;DONG Xufeng;School of Civil Engineering,Dalian University of Technology;School of Materials Science and Engineering,Dalian University of Technology;
  • 关键词:电流变弹性体 ; 动态粘弹性 ; 修正Bouc-Wen模型 ; 非线性 ; 本构模型
  • 英文关键词:electrorheological elastomer;;viscoelastic properties;;revised Bouc-Wen model;;nonlinearity;;constitutive relation
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:大连理工大学土木工程学院;大连理工大学材料科学与工程学院;
  • 出版日期:2018-01-30
  • 出版单位:功能材料
  • 年:2018
  • 期:v.49;No.412
  • 基金:国家自然科学基金资助项目(51478088);; 国家重点基础研究发展计划(973计划)资助项目(2016YFC0701102)
  • 语种:中文;
  • 页:GNCL201801017
  • 页数:7
  • CN:01
  • ISSN:50-1099/TH
  • 分类号:96-102
摘要
对电流变弹性体(electrorheological elastomers,EREs)的动态粘弹性及本构模型进行研究。以硅橡胶为基体,TiO2/尿素核壳颗粒为功能分散相,在1kV/mm取向电场条件下固化,制备颗粒体积含量为30%的各同异性ERE。在不同电场强度、剪切频率、应变幅值下测试ERE的应力-应变滞回曲线,并分析各工况下ERE的动态粘弹性,得到电场强度、应变幅值、剪切频率等因素对ERE动态粘弹性的影响规律。在实验基础上,建立了基于修正Bouc-Wen模型的ERE非线性本构模型,并识别出模型参数。结果表明,该本构模型模拟结果与试验数据吻合较好,说明该模型能够准确表征材料的动态粘弹性和非线性特征。
        The viscoelastic properties and the modeling of electrorheological elastomers(EREs)under harmonic loadings were presented in this paper.With a 30% volume fraction of TiO2/urea core-shell particles dispersed in silicone rubber matrix,the anisotropic ERE samples were fabricated by curing under a constant electric field of1 kV/mm.The samples were tested under different levels of electric field with variable shear frequencies and strain amplitudes.Then the influences of loading conditions to viscoelastic properties of ERE were analyzed.After that a revised non-linear Bouc-Wen model was used to portray the behaviors of ERE and the parameters in this model were identified based on the experimental data.The simulations agreed well with the test data,indicating that the revised Bouc-Wen model can effectively reproduce the viscoelastic properties and nonlinearity of EREs.
引文
[1]Leng J S,Asundi A.Active vibration control system of smart structures based on FOS and ER actuator[J].Smart Materials and Structures,1999,8(2):254-256.
    [2]Young K K,Kim J,Cho i S B.Passive and active damping characteristics of smart electro-rheological composite beams[J].Smart Materials and Structures,2001,10(4):724-729.
    [3]Yalcintas M,Coulte r J P.Adaptive beam model with electrorheological material based applications[J].Journal of Intelligent Material Systems and Structures,1995,6(4):498-507.
    [4]Rahn C D,Joshi S.Modeling and control of an electrorheological sandwich beam[J].Journal of Vibration and Acoustics,1998,120(1):221-227.
    [5]Liu X,Guo J,Cheng Y,et al.Synthesis and electrorheological properties of polar molecule-dominated TiO2,particles with high yield stress[J].Rheologica Acta,2010,49(8):837-843.
    [6]Yin J,Chang R,Shui Y,et al.Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions[J].Soft Matter,2013,9(31):7468-7478.
    [7]Plachy T,Sedlacik M,Pavlinek V,et al.Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology[J].Chemical Engineering Journal,2014,256(8):398-406.
    [8]Plachy T,Mrlik M,Kozakova Z,et al.The electrorheological behavior of suspensions based on molten-salt synthesized lithium titanate nanoparticles and their core-shell titanate/urea analogues[J].ACS Applied Materials&Interfaces,2015,7(6):3725-3731.
    [9]Gao Lingxiang,Zhao Xiaopeng.Behavior responding to electric field of starch/gelatin/glycerin aqueous electrorheological elastomer[J].Journal of Functional Materials,2004,35(4):426-428(in Chinese).高玲香,赵晓鹏.淀粉/明胶/甘油含水电流变胶体的电场响应行为[J].功能材料,2004,35(4):426-428.
    [10]Dong Y,Yin J,Zhao X.Microwave-synthesized poly(ionic liquid)particles:a new material with high electrorheological activity[J].Journal of Materials Chemistry A,2014,2(25):9812-9819.
    [11]Yin Y,Liu C,Wang B,et al.The synthesis and properties of bifunctional and intelligent Fe3O4@titanium oxide core/shell nanoparticles[J].Dalton Trans,2013,42:7233-7240.
    [12]Wang Z,Song X,Wang B,et al.Bionic cactus-like titanium oxide microspheres and its smart electrorheological activity[J].Chemical Engineering Journal,2014,256:268-279.
    [13]Shiga T,Okada A,Kurauchi T.Electroviscoelastic effect of polymer blends consisting of silicone elastomer and semiconducting polymer particles[J].Macromolecules,1993,26(25):6958-6963.
    [14]Hao L,Shi Z,Zhao X.Mechanical behavior of starch/silicone oil/silicone rubber hybrid electric elastomer[J].Reactive&Functional Polymers,2009,69(3):165-169.
    [15]Gao L,Zhao X.Electrorheological behaviors of barium titanate/gelatin composite hydrogel elastomers[J].Journal of Applied Polymer Science,2004,94(6):2517-2521.
    [16]Nichols M E,Ginder J M,Elie L D,et al.Electrorheological elastomers useful as variable stiffness articles:US5607996[P].1997.
    [17]Bai Quan,Wei Kexiang,Zhu Shisha.Dynamic analysis of sandwich beams filled with ER elastomers[J].Journal of Hunan Institute of Engineering,2011,21(1):20-24(in Chinese).白泉,魏克湘,朱石沙,等.电流变弹性体夹层结构梁动力学特性分析[J].湖南工程学院学报,2011,21(1):20-24.
    [18]魏克湘,孟光,刘迎春,等.基于电流变弹性体的主被动一体减振器:CN201010109697.8[P].2010.
    [19]Bai Quan,Cheng Yulan,Wang Gaosheng,et al.Design of force loading monitor and control system based on labVIEW[J].Journal of Hunan Institute of Engineering,2014,24(2):30-33(in Chinese).白泉,程玉兰,王高升.电流变弹性体的制备及其力学性能测试[J].湖南工程学院学报,2014,24(2):30-33.
    [20]Lei Xianhua.The structural design and experimental research of self-energized ERE shock absorber[D].Xiangtan:Xiangtan University,2015(in Chinese).雷先华.自供能电流变弹性体减振器的设计与实验研究[D].湘潭:湘潭大学,2015.
    [21]Niu C,Dong X,Qi M.Enhanced electrorheological properties of elastomers containing TiO2/urea core-shell particles[J].ACS Applied Materials&Interfaces,2015,7(44):24855-24863.
    [22]Wang Q,Dong X,Li L,et al.A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies[J].Smart Materials and Structures,2017,26:065010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700