动态原子力显微镜悬臂高阶谐振相位特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on phase characteristic of higher-order resonance cantilever in dynamic AFM
  • 作者:黄强先 ; 张蕤 ; 张连生 ; 赵阳 ; 陈丽娟
  • 英文作者:Huang Qiangxian;Zhang Rui;Zhang Liansheng;Zhao Yang;Chen Lijuan;School of Instrument Science and Opto-Electronics Engineering,Hefei University of Technology;School of Electronic and Information Engineering,Anhui Jianzhu University;
  • 关键词:动态AFM ; 高阶谐振 ; 相位反馈 ; 硅悬臂
  • 英文关键词:dynamic AFM;;higher-order resonance;;phase feedback;;silicon cantilever
  • 中文刊名:DZIY
  • 英文刊名:Journal of Electronic Measurement and Instrumentation
  • 机构:合肥工业大学仪器科学与光电工程学院;安徽建筑大学电子与信息工程学院;
  • 出版日期:2016-09-15
  • 出版单位:电子测量与仪器学报
  • 年:2016
  • 期:v.30;No.189
  • 基金:合肥工业大学青年教师创新项目(JZ2015HGQC0212);; 安徽省高等学校省级自然科学基金(KJ2015JD09);; 国家自然科学基金(50975075)资助项目
  • 语种:中文;
  • 页:DZIY201609020
  • 页数:7
  • CN:09
  • ISSN:11-2488/TN
  • 分类号:129-135
摘要
硅悬臂具有多阶谐振的特性,基于这一特性,提出了在动态原子力显微镜(AFM)中,利用硅悬臂高阶谐振相位特性进行三维扫描的方法,并对悬臂高阶相位特性进行了理论分析与实验验证。从理论上分析了AFM悬臂高阶谐振相位特性较其一阶谐振的相位特性有更高的灵敏度和空间分辨力,在自制动态AFM的基础上加入相位反馈模块进行了实验,实验测得悬臂一阶、二阶谐振的灵敏度分别为9.0和17.5 V/μm;垂直方向空间分辨力分别为0.56和0.29 nm,实验结果与理论分析一致。通过悬臂二阶谐振相位扫描得到了光栅的表面形貌,证明了利用悬臂高阶谐振相位特性进行扫描的可行性。
        Based on the higher-order resonance characteristic of the silicon cantilever,a method which makes use the phase characteristic of the cantilever working at the higher-order resonance mode in AFM( atomic force microscope) is proposed. And the theoretical analysis and experimental verification on the phase characteristic of the higher-order resonance cantilever are carried out. It is proved in theory that the phase characteristic of the higher-order resonance cantilever has higher flexural sensitivity and vertical spatial resolution than the first-order.The experiment is carried out on the basis of the home built dynamic AFM adding the phase feedback module,the flexural sensitivity of the first and the second order resonance cantilever measured in the experiment is 9. 0 and17. 5 V / μm,and the vertical spatial resolution is 0. 56 and 0. 29 nm,respectively. The experimental results are in agreement with the theoretical analysis. The surface profile of a grating is obtained by the cantilever scanning at the second order resonance in phase-feedback,which proves that using the phase characteristics of the higher-order resonance cantilever to measure the surface topography is feasible.
引文
[1]彭光含,杨学恒,刘济春,等.一种高精度多功能双用原子力显微镜技术及应用[J].仪器仪表学报,2008,29(1):179-184.PENG G H,YANG X H,LIU J CH,et al.Technology and application of a new-style high-resolution capability multifunctional amphibious atomic force microscope[J].Chinese Journal of Scientific Instrument,2008,29(1):179-184.
    [2]LI M,LIU L Q,XI N,et,al.Progress of AFM singlecell and single-molecule morphology imaging[J].Chinese Science Bulletin,2013,58(26):3177-3182.
    [3]MAY T M,KRISTIN B B,PAIGE A,et al.RNA isolation from single living cells using AFM[J].Biophysical Journal,2014,106(2):799.
    [4]TAREFDER R A,AHSAN S.Neural network modelling of asphalt adhesion determined by AFM[J].Journal of Microscopy,2014,254(1):31-41.
    [5]HO M H,LI C H,HSIAO S W,et al.Preparation ofchitosan/hydroxyapatite substrates with controllable osteoconductivity tracked by AFM[J].Annals of Biomedical Engineering,2015,43(4):1024-1035.
    [6]KIEN X N,NORIYUKI K,AKRIA N,et al.Video imaging of cofilin-induced actin filament severing by high speed AFM[J].Biophysical Journal,2014,106(2):163a.
    [7]TOSHIO A.High-speed AFM imaging[J].Current Opinion in Structural Biology,2014,28(1):63-68.
    [8]KROHS F,HAGEMANN S,FATIKOW S,et al.Highspeed atomic force microscopy coming of age[J].IEEE Transactions on nanotechnology,2013,12(2):246-254.
    [9]TOSHIO A,TAKAYUKI U,SIMON S.Filming biomolecular processes by high-speed atomic force microscopy[J].Chemical Reviews,2014,114(6):3120-3188.
    [10]黄强先,袁丹,尤焕杰,等.动态AFM悬臂的高阶谐振特性研究及实验[J].仪器仪表学报,2013,34(12):2647-2652.HUANG Q X,YUAN D,YOU H J,et al.Research and experiment on higher-order resonance characteristic of dynamic AFM cantilever[J].Chinese Journal of Scientific Instrument,2013,34(12):2647-2652.
    [11]黄强先,尤焕杰,袁丹,等.基于硅悬臂高阶谐振的动态原子力显微镜的快速扫描[J].光学精密工程,2014,22(3):656-662.HUANG Q X,YOU H J,YUAN D,et al.High speed scanning for dynamic atomic force microscope based on higher-order resonance of silicon cantilever[J].Optics and Precision Engineering,2014,22(3):656-663.
    [12]赵阳,黄强先,张蕤.基于高阶谐振悬臂的轻敲式原子力显微镜测量特性[J].纳米技术与精密工程,2016,14(3):223-228.ZHAO Y,HUANG Q X,ZHANG R.Measurement characteristics of tapping-mode atomic force microscope based on the higher-order resonant cantilever[J].Nanotechnology and Precision Engineering,2016,14(3):223-228.
    [13]DANZEBRINK H U,KOENDER L,WILKENING G,et al.Advances in scanning force microscopy for dimensional metrology[J].CIRP Annals,2006,55(2):841-878.
    [14]WANG G F,FENG X Q.Effects of surface stresses on contact problems at nanoscale[J].Journal of Applied Physics,2007,101(1):013510.
    [15]TSEYTLIN,YAKOV M.Atomic force microscope cantilever spring constant evaluation for higher mode oscillations:A kinetostatic method[J].Review of Scientific Instruments,2008,79(2):324-330.
    [16]张春雷,刘健,王绍治,等.前馈控制算法校正相移微动台非线性运动[J].电子测量与仪器学报,2014,28(8):879-884.ZHANG CH L,LIU J,WANG SH ZH,et al.Feed forward control algorithm for nonlinear motion correction of phase shifting stage[J].Journal of Electronic Measurement and Instrumentation,2014,28(8):879-884.
    [17]王栋,于鹏,周磊,等.基于梯形算子的AFM驱动器非对称迟滞性校正[J].仪器仪表学报,2015,36(1):32-39.WANG D,YU P,ZHOU L,et al.Asymmetric hysteresis calibration of AFM actuator based on keystone operator[J],Chinese Journal of Scientific Instrument,2015,36(1):32-39.
    [18]王学亮,李佩玥,郑楠,等.运放对压电陶瓷驱动电路系统精度影响的研究[J].电子测量技术,2014,37(10):33-36.WANG X L,LI P Y,ZHENG N,et al.Study on the impact of operational amplifier on system accuracy of the PZT driving circuit[J].Electronic Measurement Technology,2014,37(10):33-36.
    [19]陈俊,徐志伟,陈杰.压电驱动器驱动电源设计[J].国外电子测量技术,2014,33(4):48-53.CHEN J,XU ZH W,CHEN J.Design of the piezoelectric actuator driving power[J].Foreign Electronic Measurement Technology,2014,33(4):48-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700