基于硅悬臂高阶谐振的动态原子力显微镜的快速扫描
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High speed scanning for dynamic atomic force microscope based on higher-order resonance of silicon cantilever
  • 作者:黄强先 ; 尤焕杰 ; 袁丹 ; 赵阳 ; 胡小娟
  • 英文作者:HUANG Qiang-xian;YOU Huan-jie;YUAN Dan;ZHAO Yang;HU Xiao-juan;School of Instrument Science and Opto-electronic Engineering,Hefei University of Technology;
  • 关键词:原子力显微镜(AFM) ; 硅悬臂梁 ; 高阶谐振 ; 扫描速度
  • 英文关键词:Atomic Force Microscope(AFM);;silicon cantilever;;higher-order resonance;;scanning speed
  • 中文刊名:GXJM
  • 英文刊名:Optics and Precision Engineering
  • 机构:合肥工业大学仪器科学与光电工程学院;
  • 出版日期:2014-03-15
  • 出版单位:光学精密工程
  • 年:2014
  • 期:v.22
  • 基金:国家自然科学基金资助项目(No.50975075)
  • 语种:中文;
  • 页:GXJM201403019
  • 页数:8
  • CN:03
  • ISSN:22-1198/TH
  • 分类号:138-145
摘要
利用原子力显微镜(AFM)硅悬臂器件具有多阶谐振模态的特性,提出了基于硅悬臂高阶谐振特性构建动态AFM来实现快速扫描的方法,并研制了可工作于一阶模态和高阶模态的AFM。介绍了高阶谐振AFM系统的基本结构和工作原理,从理论上证明了利用硅悬臂梁高阶谐振特性实现快速扫描的可行性。以自制的AFM为研究对象,分析了影响动态AFM扫描速度的主要因素,对系统各模块的响应时间进行了分析、测试,并通过实验证明了AFM在二阶谐振模态下的稳定时间明显小于一阶谐振模态下的稳定时间。最后,分别用一阶、二阶谐振模态对光栅试样在同一区域的表面形貌进行了扫描测试,测试数据表明:在相同条件下,AFM的扫描速度在二阶谐振模态下约是一阶模态下的3.3倍。理论分析和实验结果证明了利用高阶谐振探针提高AFM扫描速度的可行性和有效性。
        On the basis of higher-order resonant characteristics of silicon cantilevers of Atomic Force Microscopes(AFMs),a high speed scanning method for dynamic AFMs based on the higher-order resonant cantilever was put forward,and an AFM working at one-order resonant and higher-order modes was developed.The basic structure and working principle of the higher-order resonant AFM system were introduced and the feasibility of the method by using the higher-order resonant characteristics of cantilever to realize high speed scanning was demonstrated theoretically.With home-built AFM as the investigated object,the main factors influencing the scanning speed of the dynamic AFM were investigated,and the response time of each system module was analyzed and estimated by tests. It is experimentally proven that the settling time of the second-order resonant mode AFM is less than that the first-order resonant mode AFM obviously.Finally,the same area of a grating sample was scanned by the first-order and the second-order mode AFMs respectively and the experimental resultsdemonstrate that the scanning speed of the second-order mode AFM is about 3.3times faster than that of the first-order resonant mode under the same condition.Theoretical analysis and experimental results prove the feasibility and effectiveness to improve the dynamic AFM scanning speed by using the higher-order resonant cantilever.
引文
[1]GARCIA R,PEREZ R.Dynamic atomic force microscopy methods[J].Surface Science Reports,2002,47(6-8):197-301.
    [2]李伟,高思田,卢明臻,等.计量型原子力显微镜的位移测量系统[J].光学精密工程,2012,20(4):796-802.LI W,GAO S T,LU M ZH,et al..Position measuring system in metrological atomic force microscope[J].Opt.Precision Eng.,2012,20(4):796-802.(in Chinese)
    [3]YUAN J,HAN L,ZUO Y S,et al..An improved AFM head for biological specimen[C].IEEE International Conference,2006,1004-1007.
    [4]苏琪.轻敲模式下AFM快速扫描技术的研究[D].天津:天津大学,2008.SU Q.Study on high-speed scanning technology of tapping mode AFM[D].Tianjin:Tianjin University,2008.(in Chinese)
    [5]殷伯华,陈代谢,林云生,等.高速大扫描范围原子力显微镜系统的设计[J].光学精密工程,2011,19(11):2651-2656.YIN B H,CHEN D X,LIN Y SH,et al..Design of AFM system with high speed and large scanning range[J].Opt.Precision Eng.,2011,19(11):2651-2656.(in Chinese)
    [6]MAHMOOD I A,MOHEIMANI S O R,et al..A new scanning method for fast atomic[J].IEEE Transactions on Nanotechnology,2011,10(2):203-216.
    [7]KROHS F,HAGEMANN S,FATIKOW S,et al..High speed AFM image scanning using observer-based MPC-notch control[J].IEEE Transactions on Nanotechnology,2013,12(2):246-254.
    [8]ANDO T.High-speed atomic force microscopy coming of age[J].Nanotechnology,2012,23(6):062001.
    [9]PICCO L M,BOZEC L,et al..Breaking the speed limit with atomic force microscopy[J].Nanotechnology,2007,18(4):044030.
    [10]于杰.基于智能控制的AFM快速扫描模式研究[D].天津:南开大学,2011.YU J.Reaearch on high-speed AFM scanning mode based on intelligent control[D].Tianjin:Nankai University,2011.(in Chinese)
    [11]SCHNIEDER A,IBBOTSON R H,DUNN R J,et al..Arrays of SU-8microcantilevers with integrated piezoresistive sensors for parallel AFM applications[J].Microelectronic Engineering,2011,88(8):2390-2393.
    [12]候祺.高阶谐振式原子力显微镜系统设计及实验[D].合肥:合肥工业大学,2011.HOU Q.Higher eigenmodes resonant AFM system design and experiment[D].Hefei:Hefei University of Technology,2011.(in Chinese)
    [13]VAN NOORT S J T,VAN DER WERF K O,DE GROOTH B G,et al..High speed atomic force microscopy of biomolecule by image tracking[J],Biophysical Journal,1999,77(4):2295-2303.
    [14]PALOCZI G,SMITH B,HANSMA P,et al..Rapid imaging of calcite crystal growth using atomic force microscopy with small cantilevers[J].Applied Physics Letters,1998,73(12):1658-1660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700