水乳化法制备罗丹明B接枝琼脂糖荧光微球
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Fluorescent Microparticles Based on Rhodamine B Grafted Agarose by Water-in-Water Emulsification Method
  • 作者:李诚博 ; 程笑晨 ; 刘晨光
  • 英文作者:LI Cheng-Bo;CHENG Xiao-Chen;LIU Chen-Guang;College of Marine Life Sciences, Ocean University of China;
  • 关键词:荧光 ; 微球 ; 罗丹明B ; 琼脂糖 ; 水水乳化
  • 英文关键词:fluorescent;;microparticle;;rhodamine B;;agarose;;water-in-water emulsification
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学海洋生命学院;
  • 出版日期:2019-05-24
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.296
  • 基金:山东省科技发展计划项目(2015GGE29028)资助~~
  • 语种:中文;
  • 页:QDHY201907004
  • 页数:7
  • CN:07
  • ISSN:37-1414/P
  • 分类号:29-35
摘要
本文旨在制备一种新型的荧光琼脂糖微球。首先通过环氧氯丙烷活化琼脂糖,再与罗丹明B进行化学接枝,制备了一种具有荧光特性的新型琼脂糖化合物。通过荧光分光光度计及X衍射仪检测,发现新型琼脂糖化合物的荧光特性与罗丹明B没有差别,都难以形成晶体。随后通过水水乳化技术进一步制备荧光琼脂糖微球,制备的微球同样具有罗丹明B的荧光性能。通过荧光显微镜和动态光散射检测,可以明显观察到微球,直径约为44μm。通过酶标仪分析其荧光接枝稳定性,验证了微球荧光特性可以长期存在,证明了接枝罗丹明B的必要性。这种琼脂糖荧光微球可能在各种荧光检测应用中具有潜在的用途。
        This article aims to prepare a new type of fluorescent agarose microparticles. First, agarose was activated by epichlorohydrin and then chemically grafted with rhodamine B to prepare a novel agarose compound with fluorescence characteristics. Fluorescence spectrophotometer and X-ray diffractometry showed that there was no difference between the fluorescence characteristics of the new agarose compound and rhodamine B, and there was almost no difference in the structure. Fluorescent agarose microparticles were further prepared by water-in-water emulsification technology. The prepared microparticles also had the fluorescence properties of rhodamine B. By fluorescence microscopy and dynamic light scattering detection, microparticles were clearly observed with a diameter of about 44 μm. The fluorescence stability of the microparticles was analyzed by microplate reader. The fluorescence characteristics of the microparticles were confirmed to be long-term. The necessity of grafting rhodamine B was proved. Such agarose fluorescent microparticles may have potential uses in various fluorescence detection applications.
引文
[1] Kim J S,Kim G.New Non-Contacting Torque sensor based on the mechanoluminescence of ZnS:Cu microparticles[J].Sens Actuators A Phys,2014:125-131.
    [2] Dichosa A E,Daughton A R,Reitenga K G,et al.Capturing and cultivating single bacterial cells in gel microdroplets to obtain near-complete genomes[J].Nat Protoc,2014,9(3):608-621.
    [3] Bally M,Dhumpa R,Voros J.Particle flow assays for fluorescent protein microarray applications[J].Biosens Bioelectron,2009,24(5):1195-1200.
    [4] Gui R,Wang Y,Sun J.Encapsulating magnetic and fluorescent mesoporous silica into thermosensitive chitosan microspheres for cell imaging and controlled drug release in vitro[J].Colloids Surf B Biointerfaces,2014,113:1-9.
    [5] Zhang X,Wen K,Wang Z,et al.An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin m1 in milk[J].Food Control,2016:588-595.
    [6] Kellar K L,Kalwar R R,Dubois K A,et al.Multiplexed fluorescent bead-based immunoassays for quantitation of human cytokines in serum and culture supernatants[J].Cytometry,2001,45(1):27-36.
    [7] Joshi V B,Geary S M,Gross B P,et al.Tumor lysate-loaded biodegradable microparticles as cancer vaccines[J].Expert Rev Vaccines,2014,13(1):9-15.
    [8] Xiao K,Nie H,Gong C,et al.A colorimetric and fluorescent dual-channel cyanide ion probe using crosslinked polymer microspheres functionalized with protonated brooker'smerocyanine[J].Dyes Pigm,2015,116:82-88.
    [9] He K,Chen C,Liang C,et al.Highly selective recognition and fluorescent detection of JEV via virus-imprinted magnetic silicon microspheres[J].Sens Actuators B Chem,2016,233:607-614.
    [10] Lan J,Chen J,Li N,et al.Microfluidic generation of magnetic-fluorescent janus microparticles for biomolecular detection[J].Talanta,2016,151:126-131.
    [11] Liu G,He Y.Facile synthesis of nanocrystal encoded fluorescent silica microspheres[J].J Colloid Interface Sci,2012,388(1):86-91.
    [12] Liu N,Gao Z,Ma H et al.Simultaneous and rapid detection of multiple pesticide and veterinary drug residues by suspension array technology[J].Biosens Bioelectron,2013,41:710-716.
    [13] Carotenuto G,Longo A,Repetto P,et al.New polymer additives for photoelectric sensing[J].Sens Actuators B Chem,2007,125(1):202-206.
    [14] Charinpanitkul T,Chanagul A,Dutta J,et al.Effects of cosurfactant on zns nanoparticle synthesis in microemulsion[J].Sci TechnolAdv Mat,2005,6(3-4):266-271.
    [15] Kobayashi Y,Misawa K,Kobayashi M,et al.Silica-coating of fluorescent polystyrene microspheres by a seeded polymerization technique and their photo-bleaching property[J].Colloids Surf A,2004,242(1-3):47-52.
    [16] Tsien R Y.A Non-Disruptive Technique for loading calcium buffers and indicators into cells[J].Nature,1981,290(5806):527-528.
    [17] Brunner A,Minamitake Y,Gopferich A.Labelling peptides with fluorescent probes for incorporation into degradable polymers[J].Eur J Pharm Biopharm,1998,45(3):265-273.
    [18] Hettiarachchi K,Lee A P.Polymer-lipid microbubbles for biosensing and the formation of porous structures[J].J Colloid Interface Sci,2010,344(2):521-527.
    [19] Yoo J W,Irvine D J,Discher D E,et al.Bio-inspired,bioengineered and biomimetic drug delivery carriers[J].Nat Rev Drug Discov,2011,10(7):521-535.
    [20] Normand V,Lootens D L,Amici E,et al.New insight into agarose gel mechanical properties[J].Biomacromolecules,2000,1(4):730-738.
    [21] Kondaveeti S,Prasad K,Siddhanta A K.Functional modification of agarose:A facile synthesis of a fluorescent agarose-tryptophan based hydrogel[J].Carbohydrate Polymers,2013,97(1):165-171.
    [22] Kondaveeti S,Chejara D R,Siddhanta A K.A facile one-pot synthesis of a fluorescent agarose-o-naphthylacetyl adduct with slow release properties[J].Carbohydrate Polymers,2013,98(1):589-595.
    [23] Oza M D,Prasad K,Siddhanta A K.One-pot synthesis of fluorescent polysaccharides:Adenine grafted agarose and carrageenan[J].Carbohydrate Research,2012,357:23-31.
    [24] Stertman L,Lundgren E,Sjoholm I.Starch microparticles as a vaccine adjuvant:only uptake in peyer's patches decides the profile of the immune response[J].Vaccine,2006,24(17):3661-3668.
    [25] Li B,Wang L,Li D,et al.Fabrication of starch-based microparticles by an emulsification-crosslinking method[J].J Food Eng,2009,92(3):250-254.
    [26] Rodríguez-Carvajal J.Recent advances in magnetic structure determination by neutron powder diffraction[J].Physica B:Condensed Matter,1993,192(1):55-69.
    [27] Li B,Wang L,Li D,et al.Preparation and characterization of crosslinked starch microspheres using a two-stage water-in-water emulsion method[J].Carbohydr Polym,2012,88(3):912-916.
    [28] Kong Y,Li D,Wang L,et al.Preparation of gelatin microparticles using water-in-water (W/W) emulsification technique[J].J Food Eng,2011,103(1):9-13.
    [29] Kong Y,Li D,Wang L,et al.Preparation of gelatin microparticles using water-in-water (W/W) emulsification technique[J].J Food Eng,2011,103(1):9-13.
    [30] Oza M D,Meena R,Siddhanta A K.Facile synthesis of fluorescent polysaccharides:Cytosine grafted agarose and κ-carrageenan [J].Carbohydr Polym,2012,87(3):1971-1979.
    [31] Watase M,Nishinari K,Clark A H,et al.Differential scanning calorimetry,rheology,X-ray,and NMR of very concentrated agarose gels[J].Macromolecules,1989,22(3):1196-1201.
    [32] Li X,Yin Y,Deng J,et al.A solvent-dependent fluorescent detection method for Fe(3+) and Hg(2+) based on a rhodamine B derivative[J].Talanta,2016,154:329-334.
    [33] Ghasemi E,Kaykhaii M.Application of micro-cloud point extraction for spectrophotometric determination of malachite green,crystal violet and rhodamine B in aqueous samples[J].Spectrochim Acta A Mol Biomol Spectrosc,2016,164:93-97.
    [34] Stenekes R J,Franssen O,van Bommel E M,et al.The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres[J].Int J Pharm,1999,183(1):29-32.
    [35] Yamamoto Y,Fujii S,Shitajima K,et al.Soft polymer-silica nanocomposite particles as filler for pressure-sensitive adhesives[J].Polymer,2015,70:77-87.
    [36] Liu B,Sun S,Zhang M,et al.Facile synthesis of large scale and narrow particle size distribution polymer particles via control particle coagulation during one-step emulsion polymerization [J].Colloids Surf A,2015,484:81-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700