离子在近电子能损阈值能区诱发云母表面小丘形成
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation of Hillock on Muscovite Mica Surface Induced by Energetic Ion near Electronic Energy Loss Threshold
  • 作者:靳博 ; 魏龙 ; 牛犇 ; 张琦 ; 李鹏飞 ; 包良满 ; 雷前涛 ; 管世王 ; 靳定坤 ; 宋光银 ; 谢一鸣 ; 哈帅 ; 崔莹 ; 马越 ; 张红强 ; 陈熙萌
  • 英文作者:JIN Bo;WEI Long;NIU Ben;ZHANG Qi;LI Pengfei;BAO Liangman;LEI Qiantao;GUAN Shiwang;JIN Dingkun;SONG Guangyin;XIE Yiming;HA Shuai;CUI Ying;MA Yue;ZHANG Hongqiang;CHEN Ximeng;School of Nuclear Science and Technology, Lanzhou University;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;Department of Radiotherapy, Jieyang People's Hospital;Nishina Center, Institute of Physical and Chemical Research;
  • 关键词:小丘结构 ; 白云母 ; 热退火 ; 电子能损阈值
  • 英文关键词:hillock;;muscovite mica;;thermal annealing;;electronic energy loss threshold
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:兰州大学核科学与技术学院;中国科学院上海应用物理研究所;揭阳人民医院放射科;理化学研究所仁科加速器研究中心;
  • 出版日期:2019-01-04 11:28
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(11475075,11775103)
  • 语种:中文;
  • 页:YZJS201905001
  • 页数:7
  • CN:05
  • ISSN:11-2044/TL
  • 分类号:6-12
摘要
利用0.65 MeV的He~+离子轰击白云母膜,并在大气环境下用原子力显微镜(AFM)的轻敲模式分析了辐照后的膜表面。实验结果显示,在不同温度下离子诱导的小丘高度在小于1 nm到几nm之间,且室温条件下能诱发小丘生成的He~+离子电子能损阈值在0.44 keV/nm以下。此外,升高温度至973 K并在其中选取不同温度进行表面辐照来验证观测到的小丘结构。实验发现,相比于室温,小丘直径和高度的统计分布在更高温度下表现出了更大的歧离。分别利用分析热峰模型和双温热峰模型计算了辐照过程中的核能损与电子能损,并选取了用能损在阈值附近的离子辐照所产生的小丘的实验数据与模拟结果相比较,发现实验结果与双温热峰模型吻合较好。
        Muscovite mica sheets were bombarded with He~+ ions of 0.65 MeV. The irradiated surfaces were analyzed in the air with atomic force microscopy(AFM) in the tapping mode. It reveals the ion-induced hillocks with height from less than 1 nm to a few nm at various temperatures. The electronic energy loss threshold for the hillock formation is found to be below 0.44 keV/nm by using He~+ ions at the room temperature. The surfaces were also bombarded at various elevated temperatures up to 973 K to confirm the observed hillocks. It is found that the statistical distribution of the diameter and height of the hillocks gets more divergent and spreads with larger values at higher temperatures due to the thermal annealing, compared with that at the room temperature. The mean diameter and height of the hillocks do not show any significant change. The two thermal spike model calculations were compared with the experiment near the threshold. The analytical thermal spike model and the two-temperature thermal spike model were taken into account in both the electronic and nuclear energy loss. The threshold value calculated by analytical thermal spike model is quite beyond the experimental value. It is found that the experimental threshold is little below the calculated value if only the electronic energy loss is considered. Taking into account the small nuclear energy loss, the hillocks can be formed within the framework of the two-temperature thermal spike model.
引文
[1] ACKERMANN J,ANGERT N,NEUMANN R,et al.Ion track diameters in mica studied with scanning force microscopy[J].Nucl Instrum Methods Phys Res B,1996,107:181-184.
    [2] FACSKO S,HELLER R,EL-SAID A S,et al.Surface nanostructures by single highly charged ions[J].J Phys Condens Mat,2009,21:224012.
    [3] THIBAUDAU F,COUSTY J,BALZNZAT E,et al.Atomic-force-microscopy observations of tracks induced by swift Kr ions in mica[J].Phys Rev Lett,1991,67:1 582-1 585.
    [4] BARLO-DAYA D D N,HALLEN A,HAKANSSON P,et al.Scanning force microscopy study of surface tracks induced in mica by 78.2 MeV 127I ions[J].Nucl Instrum Methods Phys Res B,1995,103:454-465.
    [5] RITTER R,KOWARIK G,MEISSL W,et al.Nanostructure formation due to impact of highly charged ions on mica[J].Vacuum,2010,84:1 062-1 065.
    [6] BARLO-DAYA D D N,HALLEN A,ERIKSSON J,et al.Radiation damage features on mica and L-valine probed by scanning force microscopy[J].Nucl Instrum Methods Phys Res B,1995,106:38-42.
    [7] BARLO-DAYA D D N,REIMANN C T,HALLEN A,et al.Latent (sub-surface) tracks in mica studied by tapping mode scanning force microscopy[J].Nucl Instrum Methods Phys Res B,1996,111:87-90.
    [8] PARKS D C,STOCKLI M P,BELL E W,et al.Non-kinetic damage on insulating materials by highly charged ion bombardment[J].Nucl Instrum Methods Phys Res B,1998,134:46-52.
    [9] PARKS D C,BASTASZ R,SCHMIEDER R W,et al.Nanometer-size surface features produced by single,low energy,highly charged ions[J].J Vac Sci Technol B,1995,13:941.
    [10] WANG Y,ZHAO Y,SUN J,et al.Creation of nanodots on mica surfaces induced by highly charged xenon ions[J].Nucl Instrum Methods Phys Res B,2012,286:299-302.
    [11] SCHNEIDER D,BRIERE M A,CLARK M W,et al.Atomic displacement due to the electrostatic potential energy of very highly charged ions at solid surfaces[J].Surf Sci,1993,294:403-408.
    [12] RUEHLICKE C,BRIERE M A,SCHNEIDER D.AFM studies of a new type of radiation defect on mica surfaces caused by highly charged ion impact[J].Nucl Instrum Methods Phys Res B,1995,99:528-531.
    [13] MEUMANN R.Scanning probe microscopy of ion-irradiated materials[J].Nucl Instrum Methods Phys Res B,1999,151:42-55.
    [14] KARLUSIC M,JAKSIC M.Thermal spike analysis of highly charged ion tracks[J].Nucl Instrum Methods Phys Res B,2012,280:103-110.
    [15] TOULEMONDE M,BENYAGOUB A,TRAUTMANN C,et al.Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2 crystal:Evidence for two thresholds of damage creation[J].Phys Rev B,2012,85:054112.
    [16] BERNAOLA O A,SAINT-MARTIN G.Different shapes of tracks in muscovite mica[J].Radiat Meas,2005,40:55-59.
    [17] FACSKO S,HELLER R,EL-SAID A S,et al.Surface nanostructures by single highly charged ions[J].J Phys Condens Mat,2009,21:224012.
    [18] KHALFAOUI N,STOQUERT J P,HAAS F,et al.Damage creation threshold of Al2O3 under swift heavy ion irradiation[J].Nucl Instrum Methods Phys Res B,2012,286:247-253.
    [19] AUMAYR F,FACSKO S,EL-SAID A S,et al.Single ion induced surface nanostructures:A comparison between slow highly charged and swift heavy ions[J].J Phys Condens Mat,2011,23:393001.
    [20] EL-SAID A S,HELLER R,MEISSL W,et al.Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions[J].Phys Rev Lett,2008,100:237601.
    [21] EL-SAID A S,WILHELM R A,HELLER R,et al.Phase diagram for nanostructuring CaF2 surfaces by slow highly charged ions[J].Phys Rev Lett,2012,109:117602.
    [22] SCHWEN D,BRINGA E,KRAUSER J,et al.Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime:Experiments and atomistic simulations[J].Appl Phys Lett,2012,101:113115.
    [23] LAKE R E,POMEROY J M,GRUBE H,et al.Charge state dependent energy deposition by ion impact[J].Phys Rev Lett,2011,107:063202.
    [24] LEMELL C,EL-SAID A S,MEISSL W,et al.On the nano-hillock formation induced by slow highly charged ions on insulator surfaces[J].Solid State Electron,2007,51:1 398-1 404.
    [25] AUMAYR F,WINTER H P.Inelastic interactions of slow ions and atoms with surfaces[J].Nucl Instrum Methods Phys Res B,2005,233:111-124.
    [26] WANG T,DING J,CHENG R,et al.Diamond-like carbon produced by highly charged ions impact on highly oriented pyrolytic graphite[J].Nucl Instrum Methods Phys Res B,2012,272:15-17.
    [27] SZENES G.Formation of amorphous latent tracks in mica[J].Nucl Instrum Methods Phys Res B,1996,107:146-149.
    [28] SNOWDEN-IFFT D,PRICE P B,NAGAHARA L A,et al.Atomic-force-microscopic observations of dissolution of mica at sites penetrated by keV/nucleon ions[J].Phys Rev Lett,1993,70:2 348-2 351.
    [29] DARTYGE E,SIGMUND P.Tracks of heavy ions in muscovite mica:Analysis of the rate of production of radiation defects[J].Phys Rev B,1985,32:5 429-5 431.
    [30] LANG M,GLASMACHER U A,MOINE B,et al.Etch-pit morphology of tracks caused by swift heavy ions in natural dark mica[J].Nucl Instrum Methods Phys Res B,2004,218:466.
    [31] BOUFFARD S,LEROY C,DELLA-NEGRA S,et al.Damage production yield by electron excitation in mica for ion and cluster irradiations[J].Philos Mag A,2001,81:2 841-2 854.
    [32] EL-SAID A S,WILHELM R A,HELLER R,et al.Tuning the fabrication of nanostructures by low-energy highly charged ions[J].Phys Rev Lett,2016,117:126101.
    [33] ZHOU P,ZHANG H,ZHANG Q,et al.The nanostructure formation on muscovite mica surface induced by intermediate-energy ions[J].Nucl Instrum Methods Phys Res B,2013,307:221-224.
    [34] SZENES G.Comparison of two thermal spike models for ion-solid interaction[J].Phys Rev B,2011,269:174-179.
    [35] SZENES G.General features of latent track formation in magnetic insulators irradiated with swift heavy ions[J].Phys Rev B,1995,51:8026.
    [36] SZENES G.Amorphous tracks in insulators induced by monoatomic and cluster ions[J].Phys Rev B,1999,60:3140.
    [37] SZENES G.Analysis of tracks induced by cluster ions in CaF2[J].Phys Rev B,2000,61:14267.
    [38] SZENES G,HORVATH Z.E,PECZ B,et al.Tracks induced by swift heavy ions in semiconductors[J].Phys Rev B,2002,65:045206.
    [39] KAMAROU A,WESCH W,WENDLER E,et al.Swift heavy ion irradiation of InP:Thermal spike modeling of track formation[J].Phys Rev B,2006,73:184107.
    [40] TOULEMONDE M,ASSMANN W,DUFOUR C,et al.Experimental phenomena and thermal spike discription of ion tracks in amorphisable inorganic insulators[J].Mat Fys Medd,2006,52:263.
    [41] WAMG Z,DOUFOUR C,PAUMIER E,et al.The Se sensitivity of metals under swift-heavy-ion irradiation:A transient thermal process[J].J Phys Condens Matt,1994,6:6 733-6 750.
    [42] KLAUMUNZER S.Thermal-spike models for ion track physics:A critical examination[J].Mat Fys Medd Dan Vid Selsk,2006,52:293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700