黏土真空预压固结的化学力学效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vacuum Preloading Advanced Study on Chemical-Mechanical Effects of Clay
  • 作者:夏涵 ; 唐玮 ; 陈浩昆 ; 罗珍贵
  • 英文作者:XIA Han;TANG Wei;CHEN Hao-kun;School of Earth Sciences and Geological Engineering,Sun Yat-sen University;
  • 关键词:黏土 ; 结合水 ; 化学力 ; 固结 ; 真空预压
  • 英文关键词:Soft clay;;Bound water;;Chemico-mechanic;;Consolidation;;Vacuum preloading
  • 中文刊名:AHNY
  • 英文刊名:Journal of Anhui Agricultural Sciences
  • 机构:中山大学地球科学与地质工程学院;
  • 出版日期:2015-06-24 08:54
  • 出版单位:安徽农业科学
  • 年:2015
  • 期:v.43;No.488
  • 基金:国家自然科学基金项目(41402239);; 中山大学青年教师培育基金(13lgpy63)
  • 语种:中文;
  • 页:AHNY201519128
  • 页数:4
  • CN:19
  • ISSN:34-1076/S
  • 分类号:381-383+395
摘要
真空预压是高含水率黏性土地基处理中一种非常有效的方法,在农田水利工程和围海造陆工程中经常使用。在真空预压处理过程中,化学环境一直处于变化的状态,化学环境的变化会引起黏土矿物表面吸附的结合水膜厚度和含量的变化,而黏土的力学行为又与结合水的厚度和含量有着密切的联系,因此化学环境的改变会对黏土的力学性质造成很大的影响。黏土因为渗透性很差,自重沉淤的速度慢,因此黏土的渗透性和强度等性质始终是制约施工速度的一个关键问题。从黏土的离子交换、胶结与沉淀溶解3种化学行为出发,分析了化学行为对黏土表面结合水含量的影响,而结合水的含量改变又会引起黏土渗透性、变形和强度3种力学行为变化,通过结合水将黏土的化学行为同力学行为联系起来,并且展望了未来黏土研究的发展方向。
        Vacuum preloading is a kind of effective foundation treatment method,compare to other methods the most advantage is less pollution,widely used in reclamation and agricultural hydraulic engineering. In the progress of vacuum preloading treatment,chemical environment has changed frequently,the changed chemical environment will cause clay bound water film thickness and content,and the mechanical behavior of clay is closely related with bound water film thickness and content,so the chemical environment will affect clay mechanical behavior.Clay foundation construction speed is very slow because clay has low permeability and strength characters. This article from ion exchange,cementation and dissolution to analyze clay chemistry effect mechanics such as permeability and strength and prospects the future development direction for the study of clay.
引文
[1]宋晶.分级真空预压法加固高黏性吹填土的模拟试验与三维颗粒流数值分析[D].长春:吉林大学,2011.
    [2]刘永红,姚爱军,周龙翔.地基处理[M].北京:科学出版社,2005.
    [3]BARSHAD I.Adeor ptiveand swelling properlies of clay-water system clays[J].Clay Technol Bull,1955,169:70-77.
    [4]CHILINGAR Z G V,RIEKE H H,ROBERTSON J O.Degree of hydration of clays[J].Sedimentology,1963,2(4):341-342.
    [5]吴凤彩.黏性土吸附结合水容重测量[J].水利水运科学研究,1987(4):74.
    [6]CHILINGAR G V,KNIGHT L.Relationship between overburden pressure and moisture content of silicic acid and gum ghatti[C]//International Geological Congress.Proc,Norden,21st Session.,Part18,1960:384-388.
    [7]GRIFFITTHS F J,JOSHI R C.Change in pore size distribution due to consolidation of clays[J].Geotechque,1989,39(1):159-167.
    [8]LI W,ZHANG Z,SUN R,et al.High pressure K0creep experiment and the anisotropy of microstructure of deep buried clay[J].Chinese Journal of Geotechnical Engineering,2006,28(10):1185-1190.
    [9]BOLT G H.Physico-chemical analysis of the compressibility of pure clay[J].Geotechnique,1956,6(2):86-93.
    [10]MARCIAL D,DELAGE P,CUI Y J.On the high stress compression of bentonites[J].Canadian Geotechnical Journal,2002,39(4):812-820.
    [11]高志义.近代土质学[M].2版.北京:科学出版社,2013.
    [12]熊德贵.基础土壤学[M].北京:中国农业大学出版社,2001.
    [13]MITCHELL J K.Fundamentals of soil behavoir[M].New York:John Wiley&Sons,1976.
    [14]库里契茨基.土中结合水译文集[C].李生林,蒲遵昭,秦素鹃,等,译.北京:地质出版社,1982.
    [15]何俊,肖树芳.结合水对海积软土流变性质的影响[J].吉林大学学报:地球科学版,2003,33(2):205-207.
    [16]COLLIS-GEORGE N,BOZEMAN J M.A double layer theory for mixed systems as applied to the moisture content of clays under restraint[J].Australian Journal of Soil Research,1970,8(3):239-258.
    [17]MESRI G,OLSON R E.Consolidation characteristics of montmorillonite[J].Geotechnique,1971,21(4):341-352.
    [18]SRIDHARAN A,JAYADIVA M S.Double layer theory and compressibility of clays[J].Geotechnique,1982,32(2):133-144.
    [19]TRIPATHY S,SCHANZ T.Compressibility behavior of clays at large pressures[J].Canadian Geotechnical Journal,2007,44(3):355-362.
    [20]SCHOFIELD A N.Cambridge geotechnical centrifuge operations[J].Geotechnique,1980,18(2):227-268.
    [21]VAN OLPHEN H.An introduction to clay colloid chemistry[M].New York:Wiley Interscience,1977.
    [22]高国瑞,韩选江,张新华.岩土工程土性分析原理[M].南京:南京工学院出版社,1988.
    [23]高国瑞.近代土质学[M].2版.北京:科学出版社,2013.
    [24]卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,1(9):81-85.
    [25]章明奎,何振立,陈国潮,等.利用当时对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4):359-365.
    [26]史奕,陈欣,沈善敏.有机胶结形成土壤团聚体的机理及理想模型[J].应用生态学报,2002,13(11):1495-1498.
    [27]陈慧娥.有机质影响水泥加固软土效果研究[D].长春:吉林大学,2006.
    [28]LIU A G,GONZALEZ R D.Adsorption/desorption in a system consisting of humic acid,heavy metals,and clay minerals[J].Journal of Colloid and Interface Science,1999,218:225-232.
    [29]赵安平.季冻区路基土冻胀的微观机理研究[M].哈尔滨:黑龙江大学出版社,2010.
    [30]宋晶,王清,张鹏,等.高黏性吹填土固结过程中细颗粒迁移规律研究[J].工程地质学报,2012,20(6):1042-1048.
    [31]陈星欣.饱和多孔介质中颗粒迁移和沉积特性研究[D].北京:北京交通大学,2012.
    [32]TONE K,KAMORI M,SHIBASAKI Y.Adsorbed cations and water film thickness on the kaolinitic clay surface[J].Journal of the Ceramic Society of Japan,1993,101(12):1395-1399.
    [33]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [34]朱春鹏,刘汉龙,沈扬.酸碱污染土强度特性的室内试验研究[J].岩土工程学报,2007,33(7):1146-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700