用户名: 密码: 验证码:
改良锰矿渣中木本植物筛选及锰的亚细胞分布和化学形态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SCREENING FOR TOLERANT WOODY PLANTS FOR IMPROVED MANGANESE SLAG AND RESEARCH ON SUBCELLULAR DISTRIBUTION AND CHEMICAL FORM OF MANGANESE
  • 作者:何蔚 ; 陈永华 ; 梁希 ; 汤春芳 ; 吴晓芙
  • 英文作者:HE Wei;CHEN Yong-hua;LIANG Xi;TANG Chun-fang;WU Xiao-fu;College of Environment Science and Engineering, Central South University of Forestry and Technology;
  • 关键词:锰矿渣 ; 改良剂 ; 耐性植物筛选 ; 亚细胞分布 ; 化学形态
  • 英文关键词:manganese mine tailing slag;;modifier concentration;;tolerant plants screening;;subcellular distribution;;chemical form
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:中南林业科技大学环境科学与工程学院;
  • 出版日期:2018-09-22
  • 出版单位:环境工程
  • 年:2018
  • 期:v.36;No.243
  • 基金:环保公益性行业专项(201509037);; 湖南省环保科技项目(湘财建指【2016】-59);; 湖南省环境科学与工程重点学科建设项目
  • 语种:中文;
  • 页:HJGC201809031
  • 页数:7
  • CN:09
  • ISSN:11-2097/X
  • 分类号:159-165
摘要
针对锰矿矿渣土壤结构不良、养分少、重金属含量高的特点,及修复植物大多为草本植物的问题,在改良锰矿矿渣(对照CK:100%矿渣+0.1 kg磷肥;改良A:80%矿渣+20%泥炭土+0.1 kg磷肥;改良B:70%矿渣+30%泥炭土+0.1 kg磷肥;改良C:60%矿渣+40%泥炭土+0.1 kg磷肥)种植条件下,对湖南本土的14种木本植物进行耐性筛选,并对长势良好的耐性植物的亚细胞分布和化学形态进行了分析。结果表明:1)植物长势、生物量、株高增量、重金属的吸收量及转移量系数均呈现改良组>对照组的规律,但改良组之间不同的植物品种存在差异,总体上泡桐、夹竹桃、栾树、乌桕表现出较好的耐性。2)Mn在泡桐、夹竹桃各部位的亚细胞分布以细胞壁为主,在栾树、乌桕各部位以细胞壁和可溶性组分为主,两者共占总量的85%~99%,在线粒体、叶绿体和细胞核等细胞器中分布均很少。3)Mn在植物各部位的化学形态以氯化钠、水提取态为主,共占47%~81%,其次是醋酸态。相比于对照组,改良组对各部位Mn的化学形态的影响因植物品种不同而存在差异。
        In view of the poor structure, less nutrient and high heavy metal content of the manganese mine tailing slag and the plants for phytoremediation mostly are herbaceous plants, pot experiments with improved slag were adopted in this paper. Under the specific conditions(CK: 100% slag+0.1 kg phosphate fertilizer, improved A: 80% slag+20% peat soil+0.1 kg phosphate fertilizer, improved B: 70% slag+30% peat soil+0.1 kg phosphate fertilizer, improved C: 60% slag+40% peat soil+0.1 kg phosphate fertilizer), 14 species of woody plants in Hunan were screened for manganese tolerance. And the subcellular distribution and chemical speciation of manganese in the tolerant plants were analyzed. Results showed that: 1) compared with CK group, three improved groups were better in plant biomass, height increment, content of heavy metals and transfer coefficient,but there are differences among different plant species in the three improved groups. On the whole, Paulownia,Nerium indicum, Koelreuteria paniculata, Sapium sebiferum showed better tolerance.2) in Paulownia and Nerium indicum, most of Mn were distributed in plant cell wall,and in Koelreuteria paniculata and Sapium sebiferum most of Mn were distributed in cell wall components and soluble components. The two parts account for 85%~ 99% of the total mass. But the distribution in cell organelles such as mitochondria, chloroplasts and nucleus components were less. 3) the main chemical forms of Mn were sodium chloride and water forms, accounted for 47%~81% of the total mass, followed by acetic acid forms. Compared with CK group, the effect of the improved groups on the chemical forms of Mn varied with plant types.
引文
[1] U S Geological Survey. Mineral Commodity Summaries[EB/OL].(2017-01)[2017-08-18].https://minerals.usgs.gov/minerals/pubs/commodity/manganese/mcs-2017-manga.pdf.
    [2] 朱志刚.中国锰矿资源开发利用现状[J].中国锰业,2016,34(2):1-3.
    [3] 谢荣秀,田大伦,方晰.湘潭锰矿废弃地土壤重金属污染及其评价[J].中南林学院学报, 2005, 25(2): 38-41.
    [4] 李金城,尹仁湛,罗亚平,等.广西大新锰矿区土壤重金属污染评价[J].环境科学与技术,2010, 33 (7):183-185, 190.
    [5] 陈璐,文方,程艳,等.铅锌尾矿库周边土壤重金属污染特征及环境风险[J]. 中国环境监测,2017,33(1):82-87.
    [6] 雷鸣,曾敏,郑袁明,等.湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价[J].环境科学报, 2008, 28(6):1212-1220.
    [7] 钱春香,王明明,许燕波.土壤重金属污染现状及微生物修复技术研究进展[J].东南大学学报,2013,43(3):669-674.
    [8] Yao Z,Li J,Xie H,et al.Review on remediation technologies of soil contaminated by heavy metals[J].Procedia Environmental Sciences,2012,16(4):722-729.
    [9] 徐剑锋,王雷,熊瑛,等.土壤重金属污染强化植物修复技术研究进展[J].环境工程技术学报,2017,7(3):366-373.
    [10] 刘恒,薛生国,何哲祥,刘丰豪,雷杰,周喜艳.锰超富集植物种质资源及耐性机制研究进展[J]. 环境科学与技术,2011,34(6):98-103.
    [11] 胡绵好,袁菊红,杨肖娥.锰超富集植物及其富集机制的研究进展[J].土壤通报,2010,41(1):248-256.
    [12] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报, 2001, 21(7): 1196-1203.
    [13] 陈永华,张富运,吴晓芙,等.改良剂对4种木本植物的铅锌耐性、亚细胞分布和化学形态的影响[J].环境科学,2015,10,36(10):3853-3859.
    [14] 张富运,陈永华,吴晓芙,等.8种木本植物对矿渣中重金属的吸收与富集研究[J].环境科学与管理,2014,39(3):168-170.
    [15] 张轩,赵俊程,吴子剑,等.六种木本植物对铅锌尾矿库重金属富集力的研究[J].湖南林业科技,2016,43(6):64-68.
    [16] D H,Xu D D,Li M S,et al.Comparison of different digestion methods in analyzing heavy metals content in soils[J].Journal of Guangxi Normal University-Natural Science Edition, 2010,28(3), 80-83.
    [17] Mohtadi A, Ghaderian S M, Schat H.A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes[J].Plant and Soil, 2012, 352(1/2): 267-276.
    [18] Weigel H J,Jger H J.Subcellular distribution and chemical form of cadmium in bean plants[J].Plant Physiology,1980,65(3):480-482.
    [19] Gabbrielli R,Panddfini T,Vergnano O,et al.Comparison of two serpentine species with different nickel tolerance strategies[J].Plant and Soil,1990,122(2):271-277.
    [20] 张富运.铅锌尾矿库耐性植物的筛选及其耐性机理初步研究[D].长沙:中南林业科技大学,2014.
    [21] Santos E F,Santini M K,Pereira A,et al.Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses [J]. Physiology and Biochemistry, 2017,113:6-19.
    [22] Muhammad I, Muhammad S R, Muhammad A M,et al.Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance inplants with future prospects: a review[J].Journal of Environmental Management, 2016, 183:521-529.
    [23] Bidwell S D, Woodrow I E, Batianoff G N. Hyperaccumulation of manganese in the rainforest tree Austromytus bidwillii (Mytaceae) from Queensland, Australia[J].Plant Biol, 2002,29:899-905.
    [24] Fecht-christoffers M M, Braun H P, Lemaitre-guillier C.Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea[J]. Plant physiology, 2003,133(4): 1935-1946.
    [25] Hayens R J.Ion exchange properties of roots and ionic interactions within the root apoplasm:their role in ion accumulation by plants[J].The Botanical Review,1980,46(1):75-99.
    [26] Allen D L,Jarrell W M.Proton and copper adsorption to maize and soybean root cell walls[J].Plant Physiology,1989(3):823-832.
    [27] 张玉秀,李林峰,柴团耀,等.锰对植物毒害及植物耐锰机理研究进展[J].植物学报,2010,(4):506-520.
    [28] Muhammad S, Camille D, Sana K,et al.Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake[J]. Journal of Hazardous Materials,2017,325, 5(5):36-58 .
    [29] 王华,唐树梅,廖香俊,等.超积累植物水蓼吸收锰的生理与分子机制[J].云南植物研究,2008,30:489-495.
    [30] 徐向华,施积炎,陈新才,等.锰在商陆叶片的细胞分布及化学形态分析[J].农业环境科学学报,2008,27:515-520.
    [31] Rauser W E.Structure and function of metal chaletors produced by plants[J].Cell Biochem and Biophys,1999,31:19-48.
    [32] 邓华.短毛蓼超富集锰的机理及对锰污染土壤的修复效应研究[D].杭州:浙江大学,2012.第一作者

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700