羟甲基脲改性氧化石墨烯材料的制备及吸附Cu~(2+)和Ni~(2+)的性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Cu~(2+), Ni~(2+) adsorption properties of hydroxymethyl urea/graphene oxide composites
  • 作者:余云 ; 杨宁宁 ; 黄彬 ; 汤胜 ; 廖有为 ; 杨焰
  • 英文作者:YU Yun;YANG Ningning;HUANG Bin;TANG Sheng;LIAO Youwei;YANG Yan;College of Materials Science and Engineering, Central South University of Forestry and Technology;College of Chemistry and Chemical Engineering, Hunan University;
  • 关键词:吸附材料 ; 氧化石墨烯/羟甲基脲复合材料(UF-GO) ; 吸附 ; Cu2+ ; Ni2+
  • 英文关键词:adsorbents;;graphene oxide/hydroxymethylurea composites;;hydroxymethyl urea;;graphene oxide;;adsorption;;Cu2+;;Ni2+
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:中南林业科技大学材料科学与工程学院;湖南大学化学化工学院;
  • 出版日期:2019-01-21 11:47
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.212
  • 基金:湖南省科技厅自然科学基金面上项目(2018JJ2670);; 中南林业科技大学研究生科技创新基金(20183049)
  • 语种:中文;
  • 页:ZNLB201902018
  • 页数:9
  • CN:02
  • ISSN:43-1470/S
  • 分类号:118-126
摘要
针对当前氧化石墨烯材料存在的吸附后固液分离困难的问题,采用化学接枝法制备了一种新型的氧化石墨烯/羟甲基脲复合材料(UF-GO),并用于水中重金属离子的去除。探讨了pH、时间及初始浓度对重金属离子去除能力的影响。结果表明:UF-GO复合材料保持了GO对重金属离子优异的吸附能力,吸附过程符合Langmuir吸附等温式,室温下对Cu~(2+)、Ni~(2+)的饱和吸附容量分别为96.9、94.1 mg·g~(-1)。在循环利用8次后,UF-GO复合材料对Cu~(2+)、Ni~(2+)两种离子的吸附容量仍保持有初次吸附容量的60、58%,表明UF-GO复合材料的回用性能较好,且能稳定存在。与GO相比,UF-GO复合材料吸附后的固液分离更加方便,有望成为一种具有较好应用前景的吸附材料。
        In view of the difficulty in solid-liquid separation after adsorption of graphene oxide materials, a new type of graphene oxide/hydroxymethyl urea composite(UF-GO) was prepared by chemical grafting(by GO and Hydroxymethyl urea based on alkaliacid-alkali process of producing urea-formaldehyde resin), and used for the removal of heavy metal ions in water, and the effects of pH, time and initial concentration on the removal ability of heavy metal ions were further discussed. The experimental results show that the adsorption of UF-GO is accordance with the Langmuir equation, the maximum adsorption capacity of Cu~(2+) and Ni~(2+) was96.9 mg/g and 94.1 mg·g~(-1), respectively. The results of adsorption-desorption experiments show that the adsorption capacity to Cu~(2+) and Ni~(2+) still remained 60%, 58% of its initial capability after 8 cycles and also show that methylol urea can effectively immobilize GO and retain the adsorption capacity in a degree. Compared with GO, the solid-liquid separation of UF-GO composites after adsorption is more convenient, and it is expected to become an adsorbent with good application prospects.
引文
[1]任伊宾,杨柯,梁勇.医用金属材料中的镍危害[J].生物医学工程学杂志,2005,22(5):1067-1069.
    [2]熊蔚蔚,吴淑杭,徐亚同,等.等毒性配比法研究镉、铬和铅对淡水发光细菌的联合毒性[J].生态环境学报,2007,16(4):1085-1087.
    [3]JANIN A,ZAVISKA F,DROGUI P,et al.Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation[J].Hydrometallurgy,2009,96(4):318-326.
    [4]ODEGAARD H.Norwegian experiences with chemical treatment of raw wastewater[J].Journal of Physical Chemistry,1992,62:255-264.
    [5]罗发生,徐晓军,李新征,等.微电解法处理铜冶炼废水中重金属离子研究[J].水处理技术,2011,37(3):100-104.
    [6]CHEN X,CHEN G,YUE P L.Novel electrode system for electroflotation of wastewater[J].Environmental Science&Technology,2002,36(4):778-783.
    [7]RENGARAJ S,MOON S H.Kinetics of adsorption of Co(II)removal from water and wastewater by ion exchange resins[J].Water Research,2002,36(7):1783-1793.
    [8]朱华芳,高洁,郭亚飞,等.溶剂萃取法提锂的研究进展[J].广东微量元素科学,2010,17(11):25-30.
    [9]SOYLAK M,UNSAL Y E,KIZIL N,et al.Utilization of membrane filtration for preconcentration and determination of Cu(II)and Pb(II)in food,water and geological samples by atomic absorption spectrometry[J].Food&Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association,2010,48(2):517-21.
    [10]CIARDELLI G,CORSI L,MARCUCCI M.Membrane separation for wastewater reuse in the textile industry[J].Resources Conservation&Recycling,2001,31(2):189-197.
    [11]HO Y S,OFOMAJA A E.Kinetic studies of copper ion adsorption on palm kernel fibre[J].Journal of Hazardous Materials,2006,137(3):1796-802.
    [12]黄丽,刘石彩,杨华.水蒸气活化法制备松子壳活性炭的研究[J].中南林业科技大学学报,2017,37(3):111-115.
    [13]DEMIRBAS A.Heavy metal adsorption onto agro-based waste materials:a review[J].Journal of Hazardous Materials,2008,157(2-3):220-229.
    [14]HU W,PENG C,LUO W,et al.Graphene-based antibacterial paper[J].Acs Nano,2010,4(7):4317-23.
    [15]樊亚茹,张永超,王素敏.石墨烯基电极材料的研究进展[J].精细化工中间体,2018,48(2):8-15.
    [16]周丽,邓慧萍,万俊力,等.石墨烯基铁氧化物磁性材料的制备及在水处理中的吸附性能[J].化学进展,2013,25(1):145-155.
    [17]赵临五,王春鹏.脲醛树脂胶黏剂[M].北京:化学工业出版,2005.
    [18]CHEN C Y,CHIANG C L,CHEN C R.Removal of heavy metal ions by a chelating resin containing glycine as chelating groups[J].Separation&Purification Technology,2007,54(3):396-403.
    [19]ERTAN E,GüLFEN M.Separation of gold(III)ions from copper(II)and zinc(II)ions using thiourea-formaldehyde or urea-formaldehyde chelating resins[J].Journal of Applied Polymer Science,2009,111(6):2798-2805.
    [20]GüLFEN M.Separation and Recovery of Silver(I)Ions from Base Metal Ions by Thiourea-or Urea-Formaldehyde Chelating Resin[J].Separation Science&Technology,2009,44(8):1869-1883.
    [21]李定龙,姜晟.重金属废水处理的方案比较研究[J].工业安全与环保,2005,31(12):18-19.
    [22]SUN P,ZHENG F,ZHU M,et al.Selective Trans-Membrane Transport of Alkali and Alkaline Earth Cations through Graphene Oxide Membranes Based on Cation-πInteractions[J].Acs Nano,2014,8(1):850.
    [23]YANG S T,CHANG Y,WANG H,et al.Folding/aggregation of graphene oxide and its application in Cu2+removal[J].Journal of Colloid&Interface Science,2010,351(1):122.
    [24]MATSUOY,NIWAT,SUGIEY.Preparation and characterization of cationic surfactant-intercalated graphite oxide[J].Carbon,1999,37(6):897-901.
    [25]DIKINDA,STANKOVICHS,ZIMNEYEJ,etal.Preparation and characterization of graphene oxide paper[J].Nature,2007,448(7152):457.
    [26]SUN Y,YANG S,DING C,et al.Tuning the chemistry of graphene oxides by a sonochemical approach:application of adsorption properties[J].Rsc Advances,2015,5(32):24886-24892.
    [27]HAI T X,JIAN H C,XUE S,et al.NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II)from aqueous solution[J].Chemical Engineering Journal,2015,263:280-289.
    [28]LAI L,CHEN L,ZHAN D,et al.One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties[J].Carbon,2011,49(10):3250-3257.
    [29]HUANG Z H,ZHENG X,LV W,et al.Adsorption of lead(II)ions from aqueous solution on low-temperature exfoliated graphene nanosheets[J].Langmuir the Acs Journal of Surfaces&Colloids,2011,27(12):7558-7562.
    [30]ZHAO G,REN X,GAO X,et al.Removal of Pb(II)ions from aqueous solutions on few-layered graphene oxide nanosheets[J].Dalton Transactions,2011,40(41):10945-10952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700