气动多点供油装置油雾特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Spray Characteristics of an Air-Assisted Multi-Point Fuel Supply Device
  • 作者:章宇轩 ; 何小民 ; 金义 ; 周毅
  • 英文作者:ZHANG Yu-xuan;HE Xiao-min;JIN Yi;ZHOU Yi;Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:气动多点供油 ; 雾化 ; 燃油流量 ; 燃烧技术
  • 英文关键词:Air-assisted multi-point fuel supply;;Atomization;;Fuel flux;;Combustion technology
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院江苏省航空动力系统重点实验室;
  • 出版日期:2019-02-27 16:52
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.265
  • 基金:南京航空航天大学2017年研究生创新基地(实验室)开放基金(kfjj20170213)
  • 语种:中文;
  • 页:TJJS201907019
  • 页数:12
  • CN:07
  • ISSN:11-1813/V
  • 分类号:160-171
摘要
为了研究一种部分预蒸发预混合气动多点供油装置的雾化性能,使用燃油收集器和相位多普勒粒子分析仪(PDA),获得了多点供油装置下游的燃油流量分布和索太尔平均直径分布,并使用数值模拟方式获得了供油装置内外流场形态和油气动量比变化趋势,分析了流量与粒径分布的形成原因。结果表明,多点供油装置下游燃油主要集中在分布管后半段,在该位置对应的下游喷雾场内可以保持相对均匀的燃油流量分布;油雾场中雾化较好的区域可近似为一个向外侧倾斜的矩形,雾化索太尔平均直径在20μm左右。多点供油装置内部流线的变化导致分布管上各小孔流量不均,进而使分布管下游油气动量比产生变化,是形成其下游的燃油流量分布和索太尔平均直径分布趋势的最直接原因。
        In order to investigate the atomization performance of an partial premixed and evaporated air-assisted multi-point fuel supply device suitable for cavity flame stabilizer,the fuel flow distribution and the Sauter mean diameter(SMD)distribution downstream of the multi-point fuel supply device were obtained by a fuel collector and a phase Doppler particle analyzer(PDA). The flow field inside and outside the fuel supply device,together with the fuel-to-air momentum ratio distribution,were obtained through numerical simulation,which can be seen as the cause of the flux and particle size distribution. The results show that,the downstream fuel of the multi-point fuel supply device is mainly concentrated in the rear section of the distribution pipe. A relatively uniform fuel flow distribution can be acquired inside the downstream spray field corresponding to this location. The well-atomized region in the spray field is approximately an outward inclining belt with a measured SMD around20μm. Changes in the internal flow lines of the multi-point fueling device lead to an unequal flow in the orifices on the distribution pipe,which in turn causes a change in the fuel-to-air ratio downstream of the distribution pipe,directly forming the distribution of the downstream fuel flow and the Sauter mean diameter.
引文
[1]Hsu K Y,Goss L P,Trump D D,et al.Performance of a Trapped-Vortex Combustor[R].AIAA 95-0810.
    [2]Burrus D L,Johnson A W,Roquemore W M,et al.Performance Assessment of a Prototype Trapped Vortex Combustor Concept for Gas Turbine Application[R].ASME2001-GT-0087.
    [3]Haynes J M,Micka D,Hojnacki B,et al.Trapped Vortex Combustor Performance for Heavy-Duty Gas Turbines[R].ASME GT 2008-50134.
    [4]McNelis N,Bartolotta P.Revolutionary Turbine Accelerator(RTA)Demonstrator[R].AIAA 2005-3250.
    [5]秦伟林.冲压驻涡燃烧系统设计与性能研究[D].南京:南京航空航天大学,2013.
    [6]Selvaganesh P,Vengadesan S.Cold Flow Analysis of Trapped Vortex Combustor Using Two Equation Turbulence Models[J].Aeronautical Journal,2008,112:569-580.
    [7]Jin Y,He X,Zhang J,et al.Numerical Investigation on Flow Structures of a Laboratory-Scale Trapped Vortex Combustor[J].Applied Thermal Engineering,2014,66(1-2):318-327.
    [8]刘玉英,李瑞明,杨茂林,等.驻涡燃烧室凹腔流场结构实验[J].推进技术,2010,31(1):29-33.(LIUYu-ying,LI Rui-ming,YANG Mao-lin,et al.Experiment on Flow Field of Cavity in Trapped Vortex Combustor[J].Journal of Propulsion Technology,2010,31(1):29-33.)
    [9]邢菲,樊未军,柳杨,等.凹腔油气匹配对驻涡燃烧室点火性能影响试验[J].推进技术,2008,29(4):412-416.(XING Fei,FAN Wei-jun,LIU Yang,et al.Ignition and Lean Blowout Performance of TVCwith Different Fuel-Air Matching Forms[J].Journal of Propulsion Technology,2008,29(4):412-416.)
    [10]蒋波,何小民,金义,等.采用钝体式孔板淬熄的富油-淬熄-贫油驻涡燃烧室排放性能试验研究[J].推进技术,2016,37(4):675-683.(JIANG Bo,HEXiao-min,JIN Yi,et al.Emission Characteristics of a Rich-Quench-Lean Trapped-Vortex Combustor Utilizing Quenching Device of Orifice Plate Combined with BluffBody[J].Journal of Propulsion Technology,2016,37(4):675-683.)
    [11]Zhu Z,He X,Xue C,et al.Experimental Investigations on Combustion Characteristics of a Cavity Pilot Augmenter of the Turbine-Based Combined Cycle Engine[J].Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering,2015,229(11):2024-2034.
    [12]Kumar P K E,Mishra D P.Combustion Characteristics of a 2D Twin Cavity Trapped Vortex Combustor[J].Journal of Engineering for Gas Turbines&Power,2017,139(7).
    [13]Chen S,Chue R S M,Yu S C M,et al.Spinning Effects on a Trapped Vortex Combustor[J].Journal of Propulsion and Power,2016,32(5):1-13.
    [14]侯凌云,侯晓春.喷嘴技术手册[M].北京:中国石化出版社,2002.
    [15]胡正义.航空发动机设计手册(第9册)[M].北京:航空工业出版社,2000.
    [16]吴泽俊,何小民,洪亮,等.采用离心喷嘴的单凹腔驻涡燃烧室点火与贫熄特性[J].推进技术,2015,36(4):601-607.(WU Ze-jun,HE Xiao-min,HONGLiang,et al.Ignition and Lean Blowout Characteristics of a Single-Cavity Trapped Vortex Combustor Utilizing Pressure Swirl Atomizer[J].Journal of Propulsion Technology,2015,36(4):601-607.)
    [17]谭米,樊未军,张荣春,等.声能喷嘴供油级间驻涡燃烧室的性能试验[J].航空动力学报,2013,28(5):1142-1149.
    [18]李庆.基于凹腔火焰稳定器的亚燃冲压发动机燃烧室点火过程研究[D].长沙:国防科学技术大学,2010.
    [19]郑殿峰,张会强,林文漪,等.蒸发式稳定器气态燃料掺混特性和蒸发管的流量系数[J].燃烧科学与技术,2004,10(1):28-31.
    [20]方杰.气动多点供油系统性能研究[D].南京:南京航空航天大学,2013.
    [21]张荣春,樊未军,宋双文.驻涡燃烧室蒸发管供油装置的雾化蒸发性能试验[J].航空动力学报,2011,26(11):2495-2502.
    [22]Zhang R C,Fan W J,Shi Q,et al.Combustion and Emissions Characteristics of Dual-Channel Double-Vortex Combustion for Gas Turbine Engines[J].Applied Energy,2014,130(5):314-325.
    [23]朱志新.TBCC驻涡稳焰组合燃烧室流动与燃烧特性研究[D].南京:南京航空航天大学,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700