生物调理剂对土壤镉活性的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Bio-Conditioner on Cadmium Bio-Availability in Soil
  • 作者:易皓岚 ; 刘维 ; 杨志辉 ; 侍维 ; 廖骐
  • 英文作者:YI Hao-lan;LIU Wei;YANG Zhi-hui;SHI Wei;LIAO Qi;Department of Mineral Processing and Bioengineering, Central South University;Department of Metallurgy and Environment, Central South University;
  • 关键词:土壤镉污染 ; 镉活性 ; 生物调理剂
  • 英文关键词:Cd-contaminated soil;;Cd bio-availability;;biological conditioner
  • 中文刊名:HNNK
  • 英文刊名:Hunan Agricultural Sciences
  • 机构:中南大学资源加工与生物工程学院;中南大学冶金与环境学院;
  • 出版日期:2019-05-27
  • 出版单位:湖南农业科学
  • 年:2019
  • 期:No.404
  • 基金:湖南省重金属污染耕地修复及农作物种植结构调整试点课题(湘农财指〔2016〕130)
  • 语种:中文;
  • 页:HNNK201905011
  • 页数:6
  • CN:05
  • ISSN:43-1099/S
  • 分类号:45-50
摘要
我国工农业的迅速发展,对土壤环境造成了不同程度的镉污染,农田土壤镉污染治理已经引起全球的高度重视。选取一种降低重金属生物有效性的新型生物调理剂,采用室内培养试验研究其对土壤镉活性及形态的影响。结果表明:生物调理剂中富里酸和溶解性有机物质(DOM)含量高达129.65和202.4 g/L,且微生物群落结构丰富,其中以芽孢八叠球菌属为主。生物调理剂加入到土壤后的前4周,土壤中水溶态及有效态镉含量随生物调理剂添加量的增加而降低,到第6周时低生物调理剂用量下(1%~2%)水溶态及有效镉含量升高,而高生物调理剂用量(6%~10%)水溶态及有效态镉含量下降,且形态分析表明高生物调理剂用量促进Cd向弱活性态转化。生物调理剂从土壤pH值、Eh值、DOM 3方面影响土壤水溶态及有效态镉含量,研究结果为生物调理剂在农田镉污染治理中的应用提供科学依据。
        In this study, a new biological conditioner was chosen to investigate its effects on Cd bio-availability and transformation of different Cd fractions in soils by the pot experiments. The bio-conditioner contained 129.65 g/L of fulvic acid, 202.4 g/L of dissolved organic matter(DOM) and diversified microorganisms mainly including Sporosarcina. The results show that after bio-conditioner addition,the concentrations of water-soluble and available Cd in the soil decreased with the increase of bio-conditioner in the first four weeks. In the sixth week, the concentrations of water-soluble and available Cd increased at low biological conditioner dosages(1%-2%), but decreased at high biological conditioner dosages(6%-10%). Meantime, the increase of bio-conditioner promoted the transformation of Cd to weak active fraction. The effect of bio-conditioner on water-soluble and available Cd in the soil was contributed to the varying pH, Eh, and DOM. The results could provide a scientific basis for the remediation of Cd-contaminated arable soil with bio-conditioner.
引文
[1]雷鸣,曾敏,郑袁明,等.湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价[J].环境科学学报,2008,28(6):1212-1220.
    [2]Du Y,Hu X F,Wu X H,et al.Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province,Central South China[J].Environmental Monitoring and Assessment,2013,185(12):9843-9856.
    [3]黄宇.镉低积累型水稻品种联合调控技术保障污染农田生产安全的研究[D].杭州:浙江大学,2017.
    [4]雷鸣,曾敏,王利红,等.湖南市场和污染区稻米中As、Pb、Cd污染及其健康风险评价[J].环境科学学报,2010,30(11):2314-2320.
    [5]张良运,李恋卿,潘根兴.南方典型产地大米Cd、Zn、Se含量变异及其健康风险探讨[J].环境科学,2009,30(9):2792-2797.
    [6]毛雪飞,汤晓艳,王艳,等.从“镉大米”事件谈我国种植业产品重金属污染的来源与防控对策[J].农产品质量与安全,2013(4):57-59,73.
    [7]甄燕红,成颜君,潘根兴,等.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J].安全与环境学报,2008,8(1):119-122.
    [8]中华人民共和国环境保护部.2015年环境统计年报[M].北京:中国环境出版社,2017.
    [9]Valverde M.,Fortoul T I,Díazbarriga F,et al.Induction of genotoxicity by cadmium chloride inhalation in several organs of CD-1mice[J].Mutagenesis,2000,15(2):109-114.
    [10]Mc Dowell W H.Dissolved organic matter in soils-future directions and unanswered questions[J].Geoderma,2003,113(3/4):179-186.
    [11]Hernández D,Plaza C,Senesi N,et al.Detection of Copper(II)and zinc(II)binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy[J].Environmental Pollution,2006,143(2):212-220.
    [12]Terbouche A,Djebbar S,Benali-Baitich O,et al.Characterization and complexing capacity of humic acid extracted from yakouren soil with heavy metals by conductimetry and quenching of fluorescence[J].Soil and Sediment Contamination:An International Journal,2009,19(1):21-41.
    [13]Pinto A,A M T,Devarennes A,et al.Influence of organic matter on the uptake of cadmium,zinc,copper and iron by sorghum plants[J].Science of the Total Environment,2004,326(1/2/3):239-247.
    [14]Kiran G S,Sabu A,Selvin J.Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19[J].Journal of Biotechnology,2010,148(4):221-225.
    [15]Joshi S,Bharucha C,Desai A J.Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B[J].Bioresource Technology,2008,99(11):4603-4608.
    [16]Abidi N,Cabrales L,Haigler C H.Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIRspectroscopy[J].Carbohydrate Polymers,2014,100(2):9-16.
    [17]Scholze B,Meier D.Characterization of the water-insoluble fraction from pyrolysis oil(pyrolytic lignin).Part I.PY-GC/MS,FTIR,and functional groups[J].Journal of Analytical and Applied Pyrolysis,2001,60(1):41-54.
    [18]El-Hendawy A N A.Variation in the FTIR spectra of a biomass under impregnation,carbonization and oxidation conditions[J].Journal of Analytical and Applied Pyrolysis,2006,75(2):159-166.
    [19]Li A H,Xu M Y,Sun W,et al.Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater[J].Applied Biochemistry and Biotechnology,2011,163(5):600-611.
    [20]Kang C H,Kwon Y J,So J S.Bioremediation of heavy metals by using bacterial mixtures[J].Ecological Engineering,2016,89:64-69.
    [21]González I,Vázquez M A,Romero-Baena A J,et al.Stabilization of fly ash using cementing bacteria.Assessment of cementation and trace element mobilization[J].Journal of Hazardous Materials,2017,321:316-325.
    [22]陈佳亮,刘晓文,张晓芒,等.细菌强化修复电子废弃物污染农田土壤研究[J].农业环境科学学报,2015,34(4):709-715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700