基于Flow-R模型的八一沟泥石流危险性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hazard assessment of Bayi Gully debris flow based on Flow-R model
  • 作者:聂银瓶 ; 李秀珍
  • 英文作者:NIE Yinping;LI Xiuzhen;Institute of Mountain Hazards and Environment, Chinese Academy of Sciences;University of Chinese Academy of Science;
  • 关键词:单沟泥石流 ; 危险性评价 ; 混淆矩阵 ; Flow-R模型 ; 八一沟
  • 英文关键词:single-channel debris flows;;hazard assessment;;confusion matrix;;Flow-R;;Bayi Gully
  • 中文刊名:ZRZH
  • 英文刊名:Journal of Natural Disasters
  • 机构:中国科学院水利部成都山地灾害与环境研究所;中国科学院大学;
  • 出版日期:2019-02-15
  • 出版单位:自然灾害学报
  • 年:2019
  • 期:v.28
  • 基金:国家重点基础研究发展计划(973计划)(2015CB452704);; 国家自然科学面上基金项目(Y8K1200200)~~
  • 语种:中文;
  • 页:ZRZH201901019
  • 页数:9
  • CN:01
  • ISSN:23-1324/X
  • 分类号:158-166
摘要
目前泥石流危险性评价方法通常是一条泥石流沟对应一个危险等级。Flow-R模型将泥石流源区识别与泥石流运动相结合计算泥石流的危险概率,能够评价一条泥石流沟内不同部位的危险性。为丰富泥石流评价方法的应用研究及探究单沟内泥石流危险分布特征,以八一沟为研究区,在确定八一沟泥石流源区识别阈值和运动参数的基础上,用Flow-R模型对泥石流可能的危害范围进行模拟计算,并用混淆矩阵对模拟结果进行评估,最后对八一沟流域不同部位进行了泥石流危险性评价。结果表明:(1)泥石流源区主要分布于沟道20°~50°坡度范围和1 400~1 600 m高程范围内,沟顶细小汇水沟道为泥石流提供了丰富的活动物质;(2)泥石流危险区域大致分布在沟道左右40 m范围,占整个研究区域的20.06%;极高危险区分布于沟道中心,危险性由沟道中心向两边逐渐降低;(3)Flow-R应用于研究区的正确率为84.18%,给出的泥石流危险区图合理,能够反映研究区泥石流的基本危险特征。
        At present, debris flow hazard assessment method is usually a debris flow gully corresponding to a hazard level. Flow-R model calculates hazard probability by combining the identification of debris flow source areas and the propagation of debris flow, which can assess the hazard of different parts in a debris flow gully. In order to enrich the application research of debris flow assessment method and explore the characteristics of hazard distribution in single-channel debris flows, taking Bayi Gully as study area, on the basis of determining the threshold value of sources identification and the parameters of propagation, Flow-R model is used to simulate the potential hazard range of debris flow, and then use confusion matrix to evaluate the simulation results. Finally, it assesses the debris flow hazard of Bayi Gully in different parts. The results show:(1) Debris flow source areas are mostly distributed in the gullies which the slope range from 20 to 50 degrees and the elevation range from 1 400 to 1 600 meters. The small catchment channels in the top of the gullies provide rich sources to debris flow.(2) The hazard areas are distributed roughly within the range of 40 m both sides of the channel, accounting for 20.06% of the entire study area. The high hazard areas are distributed in the center of the channel and the hazard gradually decreases from the channel center to both sides.(3) The efficiency of Flow-R model applied to the study area is 84.18% and the hazard zonation is reasonable, which can reflect the basic hazard characteristics of debris flow in the study area.
引文
[1] 吴文建, 张世涛, 张光政, 等. 基于灰色关联分析法的泥石流危险性评价——以泸水县银坡河泥石流为例[J]. 地质灾害与环境保护, 2017(3): 30-32.WU Wenjian, ZHANG Shitao, ZHANG Guangzheng, et al. Debris flow risk assessment based on grey correlation analysis method a case study of Yinpohe debris flow in Lushui County[J]. Geological Disasters and Environmental Protection, 2017(3): 30-32. (in Chinese)
    [2] 李秀珍, 孔纪名, 李朝凤. 多分类支持向量机在泥石流危险性区划中的应用[J]. 水土保持通报, 2010, 30(5): 128-133.LI Xiuzhen, KONG Jiming, LI Chaofeng. Application of multi-classification support vector machine in regionalization of debris flow hazards[J]. Bulletin of Soil and Water Conservation, 2010, 30(5): 128-133. (in Chinese)
    [3] 胡凯衡, 韦方强, 崔鹏. 基于数值模拟的泥石流危险性分区方法[J]. 自然灾害学报, 2005, 14(1): 10-14.HU Kaiheng, WEI Fangqiang, CUI Peng. Decision support system of debris flow mitigation for mountain towns[J]. Journal of Natural Disasters, 2005, 14(1): 10-14. (in Chinese)
    [4] Li H C, Wu T, Wei H P, et al. Basinwide disaster loss assessments under extreme climate scenarios: a case study of the Kaoping River basin[J]. Natural Hazards, 2017, 86(3): 1039-1058.
    [5] Horton P, Jaboyedoff M, Rudaz B, et al. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale[J]. Natural Hazards & Earth System Sciences, 2013, 13(4): 869-885.
    [6] Rahman M S, Ahmed B, Di L. Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria[J]. Journal of Mountain Science, 2017, 14(10): 1919-1937.
    [7] Park D W, Lee S R, Vasu N N, et al. Coupled model for simulation of landslides and debris flows at local scale[J]. Natural Hazards, 2016, 81(3): 1653-1682.
    [8] Michoud C, Derron M H, Horton P, et al. Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps[J]. Natural Hazards & Earth System Sciences, 2012, 12(3): 615-629.
    [9] Glade T, Kappes M S, Frigerio S, et al. Multi-hazard exposure analyses with multirisk-a platform for user-friendly analyses[C]//12th Congress Interpraevent 2012, Grenoble, France Conference Proceedings,2012.
    [10] Roberta P, Tamara M , Vincenzo D . On the criteria to create a susceptibility map to debris flow at a regional scale using Flow-R[J]. Journal of Mountain Science, 2017(4): 14-28.
    [11] 张自光, 张志明, 张顺斌. 都江堰市八一沟泥石流形成条件与动力学特征分析[J]. 中国地质灾害与防治学报, 2010, 21(1): 34-38.ZHANG Ziguang, ZHANG Zhiming, ZHANG Shunbin. Formation conditions and dynamic features of the debris flow in Bayi Gully in Dujiangyan County[J] . The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 34-38. (in Chinese)
    [12] 郭朝旭, 徐富刚, 侯天兴. 八一沟松散堆积体粒度特征研究[J]. 自然灾害学报, 2015(4): 46-55. GUO Chaoxu, XU Fugang, HOU Tianxing. Research on grain-size characteristics of loose deposit in Bayi Gully[J]. Journal of Natural Disasters, 2015(4): 46-55. (in Chinese)
    [13] 周伟, 陈宁生, 邓明枫, 等. 四川省都江堰市八一沟泥石流动力学特征及危险性评估[J]. 水土保持通报, 2011, 31(5): 138-143.ZHOU Wei, CHENG Ningsheng, DENG Mingfeng, et al. Dynamic characteristics and hazard risk assessment of debris flow in Bayi Gully of Dujiangyan City of Sichuan province[J]. Soil and Water Conservation Bulletin, 2011, 31(5): 138-143. (in Chinese)
    [14] 余斌, 马煜, 张健楠, 等. 汶川地震后四川省都江堰市龙池镇群发泥石流灾害[J]. 山地学报, 2011, 29(6): 738-746. YU Bin, MA Yu, ZHANG Jiannna, et al. The group debris flow hazards after the wenchuan earthquake in Longchi, Dujiangyan, Sichuan Province[J]. Journal of Mountain Science, 2011, 29(6): 738-746. (in Chinese)
    [15] 覃怡, 郑洪春. 都江堰八一沟8·13泥石流的形成条件分析[J]. 南水北调与水利科技, 2013, 11(4): 101-104.QIN Yi, ZHENG Hongchun. Initation conditions for the 8·13debris flows in Bayi Gully of Dujiangyan[J]. South To North Water Transters and Water Science & Technology, 2013, 11(4): 101-104. (in Chinese)
    [16] Horton P, Jaboyedoff M, Bardou E. Debris flow susceptibility mapping at a regional scale[C]//4th Canadian Conference on Geohazards, Universite Laval, Quebec, 2008.
    [17] Holmgren P. Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation[J]. Hydrological Processes, 1994, 8(4): 327-334.
    [18] 孟庆华, 孙炜锋, 张春山, 等. 陕西凤县泥石流灾害危险性评估[J]. 自然灾害学报, 2014, 23(1): 121-131.MENG Qinghua, SUN Weifeng, ZHANG Chunshan, et al. Hazard assessment of debris flow in Fengxian County of Shaanxi Province[J]. Journal of Natural Disasters, 2014, 23(1): 121-131. (in Chinese)
    [19] 邹强, 崔鹏, 张建强, 等. 长江上游地区泥石流灾害敏感性量化评价研究[J]. 环境科学与技术, 2012, 35(3): 164-168+172. ZOU Qiang, CUI Peng, ZHANG Jianqiang, et al. Quantitative evaluation for susceptibility of debris flow in upper yangtze river basin[J]. Environmental Science & Technology, 2012, 35(3): 164-168+172. (in Chinese)
    [20] 康志成, 李焯芬, 马霭乃, 等. 中国泥石流研究[M]. 科学出版社, 北京: 2004. KANG Zhicheng, LI Zhuofen, MA Ainai, er al. Debris flow study in China[M]. Science Press, Beijing, 2004. (in Chinese).
    [21] 张宁. 单体泥石流监测预警系统研发及其在四川地震灾区应用研究[D]. 中国地质大学, 北京: 2013. ZHANG Ning. A study on the single debris flow monitoring and warning stystem and its application in the earthquake-stricken area of sichuan province[D]. China university of geosciences, Beijing, 2013. (in Chinese)
    [22] Jan Blahut, Thomas Glade, Simone Sterlacchini. Debris flows risk analysis and direct loss estimation: the case study of Valtellina di Tirano, Italy[J]. Journal of Mountain Science, 2014, 11(2): 288-307.
    [23] Kappes M S, Gruber K, Frigerio S, et al. The MultiRISK platform: The technical concept and application of a regional-scale multihazard exposure analysis tool[J]. Geomorphology, 2012, s 151-152(1): 139-155.
    [24] Melo R, Zêzere J L. Modeling debris flow initiation and run-out in recently burned areas using data-driven methods[J]. Natural Hazards, 2017, 88(3): 1373-1407.
    [25] Westen C V, Kappes M S, Luna B Q, et al. Medium-Scale Multi-hazard Risk Assessment of Gravitational Processes[M]//Mountain Risks: From Prediction to Management and Governance. Springer Netherlands, 2014.
    [26] 马煜, 余斌, 吴雨夫, 等. 四川都江堰龙池“8·13”八一沟大型泥石流灾害研究[J]. 工程科学与技术, 2011(s1): 92-98.MA Yu, YU Bin, WU Yufu, et al. Research on the disaster of debris flow of Bayi Gully, Longchi, Dujiangyan, Sichuan on August 13, 2010[J]. Engineering Science and Technology, 2011(s1): 92-98. (in Chinese)
    [27] Beguería S. Validation and evaluation of predictive models in hazard assessment and risk management[J]. Natural Hazards, 2006, 37(3): 315-329.
    [28] 李明. R语言与网站分析[M]. 北京: 机械工业出版社, 2014: 286-287.LI Ming. R Language and Website Analysis[M]. Beijing: Mechanical Industry Press, 2014: 286-287. (in Chinese)
    [29] 杨宇. 汶川震后都江堰八一沟崩滑体分布和变化特征[J]. 甘肃水利水电技术, 2017, 53(1): 33-36.YANG yu. Distribution and variation characteristics of eight gully landslide in dujiangyan after Wenchuan earthquake [J]. Gansu Water Conservancy and Hydropower Technology, 2017, 53(1): 33-36. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700