南亚热带森林丛枝菌根真菌与土壤结构的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The relationship between arbuscular mycorrhizal fungi and soil structure in southern subtropical forest
  • 作者:钟思远 ; 张静 ; 褚国伟 ; 夏艳菊 ; 唐旭利
  • 英文作者:ZHONG Siyuan;ZHANG Jing;CHU Guowei;XIA Yanju;TANG Xuli;South China Botanical Garden, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:丛枝菌根真菌 ; 土壤团聚体 ; 球囊霉素相关蛋白 ; 土壤微生物 ; 南亚热带森林
  • 英文关键词:arbuscular mycorrhizal fungi;;soil aggregation;;glomalin-related soil protein;;soil microbe;;southern subtropical forest
  • 中文刊名:STKX
  • 英文刊名:Ecological Science
  • 机构:中国科学院华南植物园;中国科学院大学;
  • 出版日期:2018-09-15
  • 出版单位:生态科学
  • 年:2018
  • 期:v.37;No.137
  • 基金:国家自然科学基金项目(31270499)
  • 语种:中文;
  • 页:STKX201805003
  • 页数:9
  • CN:05
  • ISSN:44-1215/Q
  • 分类号:19-27
摘要
研究了南亚热带不同演替阶段森林土壤理化性质、团聚体组成、微生物群落结构以及球囊霉素相关蛋白(GRSP)含量,探讨丛枝菌根真菌(AMF)与土壤结构的关系。结果表明:1)南亚热带森林土壤养分、大团聚体(粒径>2000μm)含量、平均重量直径(MWD)、AMF生物量以及GRSP含量均随演替而增加。2)不同演替阶段森林土壤团聚体组成的差异主要发生在10—20cm土层,该土层总GRSP含量、易提取GRSP占比、AMF生物量、土壤有机碳(SOC)含量与其MWD具有显著正相关性。3)相关性分析表明,在南亚热带森林,AMF生物量与其总GRSP含量、易提取GRSP占比、土壤微生物量、SOC含量具有显著正相关性;总GRSP含量、易提取GRSP占比、AMF生物量、土壤微生物量、SOC含量与其大团聚体含量、MWD具有显著正相关性,而与其中、小型团聚体含量具有显著负相关性。以上研究结果表明,AMF能够通过分泌GRSP、改变土壤微生物群落、促进土壤碳固持等措施影响南亚热带森林土壤结构稳定性。
        The aim of this study is to understand the relationship between arbuscular mycorrhizal fungi(AMF) and soil structure in southern subtropical forests. Soil properties, soil aggregate compositions, microbial community structure and glomalin-related soil protein(GRSP) concentrations were measured. The results are as follows.(1) Soil nutrients, macro aggregate(particle size>2000 μm) concentration, mean weight diameter(MWD), AMF biomass and GRSP concentration increased with the forest succession.(2) The variations of soil aggregate composition in southern subtropical forests mainly occurred in 10-20 cm soil layer. Correlation analysis presented that MWD had a significantly positive correlation with the total GRSP(T-GRSP) concentration, the ratio of easy extractable GRSP to T-GRSP(EE-GRSP/T-GRSP), the AMF biomass and the soil organic carbon(SOC) content in 10-20 cm soil layer.(3) Correlation analysis indicated that AMF biomass had a significantly positive correlation with the T-GRSP concentration, EE-GRSP/T-GRSP, soil microbial biomass and SOC content. The T-GRSP concentration, EE-GRSP/T-GRSP, AMF biomass, soil microbial biomass and SOC content had a significantly positive correlation with macro aggregate concentration and MWD, but had a significantly negative correlation with micro aggregate concentration in southern subtropical forests. Our results suggested that AMF could influence the stability of soil structure by secreting GRSP, changing soil microbial community and promoting SOC sequestration in southern subtropical forests.
引文
[1]窦森,李凯,关松.土壤团聚体中有机质研究进展[J].土壤学报,2011,48(2):412-418.
    [2]DIAZ-ZORITA M,PERFECT E,GROVE J H.Disruptive methods for assessing soil structure[J].Soil&Tillage Research,2002,64(1/2):3-22.
    [3]AMéZKETA E.Soil Aggregate Stability:A Review[J].Journal of Sustainable Agriculture,1999,14(2/3):83-151.
    [4]李娜,韩晓增,尤孟阳,等.土壤团聚体与微生物相互作用研究[J].生态环境学报,2013,22(09):1625-1632.
    [5]尹瑞龄.微生物与土壤团聚体[J].土壤学进展,1985,(4):24-29.
    [6]SMITH S E,READ D J.Mycorrhizal symbiosis[M].3 rd ed.London:Academic Press,2008:13-611.
    [7]RILLIG M C,MUMMEY D L.Mycorrhizas and soil structure[J].New Phytologist,2006,171(1):41-53.
    [8]WRIGHT S F,UPADHYAYA A.Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J].Soil Science,1996,161(9):575-586.
    [9]WRIGHT S F,UPADHYAYA A.A survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J].Plant and Soil,1998,198(1):97-107.
    [10]RILLIG M C,WRIGHT S F,EVINER V T.The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:comparing effects of five plant species[J].Plant and Soil,2002,238(2):325-333.
    [11]SPOHN M,GIANI L.Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time[J].Soil Biology&Biochemistry,2011,43(5):1081-1088.
    [12]RILLIG M C,MAESTRE F T,LAMIT L J.Microsite differences in fungal hyphal length,glomalin,and soil aggregate stability in semiarid Mediterranean steppes[J].Soil Biology&Biochemistry,2003,35(9):1257-1260.
    [13]WU Q S,CAO M Q,ZOU Y N,et al.Direct and indirect effects of glomalin,mycorrhizal hyphae,and roots on aggregate stability in rhizosphere of trifoliate orange[J].Scientific Report,2014,4:5823.
    [14]LEIFHEIT E F,VERESOGLOU S D,LEHMANN A,et al.Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis[J].Plant and Soil,2014,374(1-2):523-537.
    [15]RILLIG M C.Arbuscular mycorrhizae,glomalin,and soil aggregation[J].Canadian Journal of Soil Science,2004,84(4):355-363.
    [16]ZHOU G Y,LIU S G,LI Z,et al.Old-growth forests can accumulate carbon in soils[J].Science,2006,314(5804):1417-1417.
    [17]MO J M,LI D J,GUNDERSEN P.Seedling growth response of two tropical tree species to nitrogen deposition in southern China[J].European Journal of Forest Research,2008,127(4):275-283.
    [18]HUANG W,LIU J,WANG Y P,et al.Increasing phosphorus limitation along three successional forests in southern China[J].Plant and Soil,2012,364(1-2):181-191.
    [19]郑克举,唐旭利,张静,等.季风常绿阔叶林演替系列菌根资源及其与群落多样性的关系[J].生态环境学报,2013,22(5):729-738.
    [20]吴厚水.鼎湖山自然保护区水热状况及其与生态环境的关系[J].热带地理,1982,(4):14-20.
    [21]周国逸,周存宇,LIU S G,等.季风常绿阔叶林恢复演替系列地下部分碳平衡及累积速率[J].中国科学(D辑:地球科学),2005,35(6):502-510.
    [22]顾伟,李志安,邹碧,等.华南热带人工林土壤有机碳含量及其稳定性特征[J].热带亚热带植物学报,2007,15(5):369-376.
    [23]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996.
    [24]龙凤玲,李义勇,方熊,等.大气CO2浓度上升和氮添加对南亚热带模拟森林生态系统土壤碳稳定性的影响[J].植物生态学报,2014,38(10):1053-1063.
    [25]彭思利,申鸿,郭涛.接种丛枝菌根真菌对土壤水稳性团聚体特征的影响[J].植物营养与肥料学报,2010,16(3):695-700.
    [26]SALAKO F K,HAUSE R.Influence of different fallow management systems on stability of soil aggregates in southern nigeria[J].Communications in Soil Science and Plant Analysis,2001,32(9/10):1483-1498.
    [27]BOSSIO D A,SCOW K M.Impact of carbon and flooding on the metabolic diversity of microbial communities in soils[J].Applied and Environmental Microbiology,1995,61(11):4043-4050.
    [28]王卫霞,罗达,史作民,等.岷江干旱河谷造林对土壤微生物群落结构的影响[J].生态学报,2014,34(4):890-898.
    [29]罗达,史作民,唐敬超,等.南亚热带乡土树种人工纯林及混交林土壤微生物群落结构[J].应用生态学报,2014,25(9):2543-2550.
    [30]FANG X,ZHOU G Y,LI Y L,et al.Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest[J].Biology and Fertility of Soils,2016,52(3):353-365.
    [31]张静,唐旭利,郑克举,等.赤红壤地区森林土壤球囊霉素相关蛋白测定方法[J].生态学杂志,2014,33(1):249-258.
    [32]闫俊华,周国逸,陈忠毅.鼎湖山三种演替群落与其土壤结构及其某些水文效应耦合研究[J].资源生态环境网络研究动态,2000,11(1):6-11.
    [33]岳琳艳,郑俊强,韩士杰,等.长白山温带森林不同演替阶段土壤化学性质及微生物群落结构的变化[J].生态学杂志,2015,34(9):2590-2597.
    [34]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.
    [35]WILSON G W,RICE C W,RILLIG M C,et al.Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments[J].Ecology Letter,2009,12(5):452-461.
    [36]RILLIG M C,WRIGHT S F,NICHOLS K A,et al.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J].Plant and Soil,2001,233(2):167-177.
    [37]陈庆强,沈承德,孙彦敏,等.鼎湖山土壤有机质深度分布的剖面演化机制[J].土壤学报,2005,42(1):1-8.
    [38]温达志,魏平,孔国辉,等.鼎湖山南亚热带森林细根生产力与周转[J].植物生态学报,1999,23(4):74-82.
    [39]梁健.子午岭植物群落演替与土壤养分及微生物群落的关系[D].陕西:陕西师范大学,2011.
    [40]TISDALL J M,OADES J M.Organic-matter and water-stable aggregates in soils[J].Journal of Soil Science,1982,33(2):141-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700