基于分区迭代推进方法的锥体热环境研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Environment of Cone Body Based on Division Iterative Marching Method
  • 作者:黄杰 ; 姚卫星
  • 英文作者:HUANG Jie;YAO Weixing;Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics & Astronautics;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics & Astronautics;
  • 关键词:热环境 ; 气动热 ; 结构传热 ; 有限体积法 ; 有限元法
  • 英文关键词:thermal environment;;aerodynamic heating;;structural heat transfer;;finite volume method;;finite element method
  • 中文刊名:NJHK
  • 英文刊名:Journal of Nanjing University of Aeronautics & Astronautics
  • 机构:南京航空航天大学飞行器先进设计技术国防重点学科实验室;南京航空航天大学机械结构力学及控制国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:南京航空航天大学学报
  • 年:2019
  • 期:v.51;No.246
  • 基金:江苏高校优势学科建设工程资助项目
  • 语种:中文;
  • 页:NJHK201901014
  • 页数:8
  • CN:01
  • ISSN:32-1429/V
  • 分类号:94-101
摘要
针对锥体热环境问题,提出了气动热与结构传热的分区迭代推进分析方法。其中流场采用有限体积法计算,空间离散采用AUSM+格式。时间推进采用显示多步Runge-Kutta格式,结构热传导采用有限元方法求解,而数据传递采用基于虚拟空间的插值方法。圆管验证算例分析显示,2 s时刻驻点处的热流密度和温度的计算值与试验值的相对误差分别为1.34%和4.95%。最后进行了直二次圆锥体的热环境分析,壁面初始热流密度值与试验值吻合得很好,其中驻点热流的计算值与试验值的相对误差为3.1%。耦合分析过程中驻点温度随时间的推移而升高,且上升趋势逐渐变缓,最终趋于稳态值。此外时间的变化对锥体表面压强的影响可忽略不计,而壁面热流却随时间的增加而降低。
        The division iterative marching method on aerodynamic heating and structural heat transfer for the thermal environment of the cone body is presented. The flow field is calculated by the finite volume method.Spatial discretization scheme uses AUSM +. Explicit multi- step Runge - Kutta is used to calculate time iteration scheme. However,the structural heat transfer is calculated by the finite element method. Besides,the data exchange on the coupled wall is conducted by the interpolation method based on the virtual space.The verification example on the circular tube is analyzed,and the relative errors between the calculated values and corresponding test values for the heat flux and temperature of the stagnation point are 1.34% and 4.95% respectively at 2 s. Finally,the analysis on thermal environment of the straight biconic body is conducted.The initial wall heat flux is well matched with the experimental result,and the relative error between calculated value and experimental value at stagnation point is 3.1%. The temperature at the stagnation point increases with the time,and the upward trend slows down gradually. Finally it tends to the steady-state value.The time almost has no influence on the wall pressure,but the wall heat flux decreases with the increase of the time.
引文
[1] DEJARNETTE F R, HAMILTON H H.Aerodynamic heating on 3D bodies including the effects of entropy layer swallowing[J]. Journal of Spacecraft and Rockets,1975,12(1):5-12.
    [2] BRANDON H J,MASEK R V,DUNAVANT J C.Aerodynamic heating to corrugation stiffened struc-tures in thick turbulent boundary layers[J]. AIAA Journal,1975,13(11):1460-1466.
    [3] INGER G R. Nonequilibrium boundary-layer effects on the aerodynamic heating of hypersonic waverider vehicles[J]. Journal of Thermophysics and Heat Transfer,1995,9(4):595-604.
    [4] MILOS F S,SQUIRE T H. Thermostructural analysis of X-34 wing leading-edge tile thermal protection system[J]. Journal of Spacecraft and Rockets,1999,36(2):189-198.
    [5]程克明,吕英伟.飞行器持续气动加热的耦合性分析[J].南京航空航天大学学报,2000,32(2):150-155.CHENG Keming,LüYingwei. An analysis of cou-pling feature in continuing gasdynamic heating over flight vehicles[J]. Journal of Nanjing University of Aeronautics&Astronautics,2000,32(2):150-155.
    [6]任青梅,杨志斌,城主,等.气动加热与结构温度场耦合分析平台研发技术[J].强度与环境,2009,36(5):33-38.REN Qingmei,YANG Zhibin,CHENG Zhu,et al.Development of platform for analysis coupling aero-heating and structural temperature field[J]. Structure&Environment Engineering,2009,36(5):33-38.
    [7]季卫栋,王江峰,樊孝峰,等.高超声速流场与结构温度场一体化计算方法[J].航空动力学报,2016,31(1):153-160.JI Weidong,WANG Jiangfeng,FAN Xiaofeng,et al.Algorithms for hypersonic fluid-structural-thermal inte-grated[J].Journal of Aerospace Power,2016,31(1):153-160.
    [8]黄唐,毛国良,姜贵庆,等.二维流场、热、结构一体化数值模拟[J].空气动力学学报,2000,18(1):115-119.HUANG Tang,MAO Guoliang,JIANG Guiqing,et al. Two dimensional coupled flow-thermal-structural numerical simulation[J]. Acta Aerodynamica Sinica,2000,18(1):115-119.
    [9] WIETING A R,DECHAUMPHAI P,BEY K S,et al. Application of integrated fluid-thermal-structural analysis methods[J]. Thin-Walled Structures,1991,10(1):1-12.
    [10] LIOU M S. A sequel to AUSM:AUSM+[J].Journal of Computational Physics,1996,129(2):364-382.
    [11] LEER B V. Towards the ultimate conservative difference scheme V:A second-order sequel to Godunov's method[J]. Journal of Computational Physics,1979,32(1):101-136.
    [12] MENTER F R. Two-equation eddy-viscosity turbul-ence models for engineering applications[J]. AIAA Journal,1994,32(8):1598-1605.
    [13] DEESE J E,AGARWAL R K. Navier-Stokes calculations of transonic viscous flow about wing/body configurations[J].Journal of Aircraft,1988,25(12):1106-1112.
    [14] ZHAO Y. Computation of complex turbulent flow using matrix-free implicit dual time-stepping scheme and LRN turbulence model on unstructured grids[J].Computers&Fluids,2004,33(1):119-136.
    [15] WIETING A R. Experimental study of shock wave interference heating on a cylindrical leading edge[R].NASA-TM-100484,USA:NASA,1987.
    [16] MILLER C G. Experimental and predicted heating distributions for biconics at incidence in air at Mach 10[R]. NASA Technical Paper 2234,USA:NASA,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700