云南富宁两期基性岩地球化学性质与金矿成矿
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics of Two Stages of Basic Dykes and Gold Mineralization at Funing, Yunnan Province, China
  • 作者:韦朝文 ; 皮桥辉 ; 胡瑞忠 ; 胡云沪 ; 吴建标 ; 李国 ; 杨雄
  • 英文作者:WEI Chao-wen;PI Qiao-hui;HU Rui-zhong;HU Yun-hu;WU Jian-biao;LI Guo;YANG Xiong;Guilin University of Technology, Earth sciences institute;Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology;State Key Laboratory of Ore Deposit Geochemistry, lnstitute of Geochemistry, Chinese Academy of Sciences;
  • 关键词:基性岩 ; U-Pb定年 ; 地球化学特征 ; 岩石成因 ; 金矿
  • 英文关键词:basic rock;;zircon U-Pb dating;;geochemical characteristics;;rock genesis;;gold deposit
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:桂林理工大学地球科学学院;桂林理工大学广西隐伏金属矿产勘查重点实验室;中国科学院地球化学研究所矿床地球化学国家重实验室;
  • 出版日期:2018-07-18 16:27
  • 出版单位:矿物学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(批准号:41563004);; 广西自然科学基金(编号:2017GXNSFAA198336);; 国家自然科学基金项目(编号:41674075);; 广西自然科学基金项目(编号:2016GXNSFGA380004);; 广西高等学校高水平创新团队及卓越学者计划
  • 语种:中文;
  • 页:KWXB201805005
  • 页数:16
  • CN:05
  • ISSN:52-1045/P
  • 分类号:34-49
摘要
基性岩与金矿的关系一直备受关注。本文研究了富宁周边分布的2期基性岩,以及该地区的几个大型金矿。结果表明,早期基性岩的U-Pb年龄为(258±5)Ma,与前人研究成果相吻合,认为富宁早期基性岩与峨眉山地幔柱相关。晚期基性岩~(206)Pb/~(238)U年龄为(219.9±6.6)Ma (MSWD=1.2),与早期基性岩差异明显。晚期基性岩的主微量和稀土元素研究均显示可能存在俯冲物质混染,熔体源区为富集岩石圈地幔端元(E-MORB)和亏损岩石圈地幔端元(N-MORB)部分熔融的混合产物。结合前人对该地区构造活动的研究,认为晚期基性岩来源于地幔并受俯冲物质污染。矿相学与地球化学的研究显示,2期基性岩对于金矿的形成均有贡献,早期基性岩提供了有限的作用,而晚期基性岩年龄与该区几个大型金矿成矿年龄大致相吻合,结合地球化学分析与前人研究,认为晚期基性岩除了大量萃取地层成矿物质外,也是成矿流体循环成矿的重要热源,加之频繁的构造活动对早期矿床的叠加成矿作用,最终形成该区的几个大型金矿。因此晚期基性岩与该区金矿成矿有密切关系,是该区下一步寻大矿揪小矿的重要标志。
        The relationship between basic rocks and gold deposits has always been paid much attention. In this paper, two basic dykes and several large gold deposits in the Funing area have been studied. The results show that, the U-Pb age of 258±5 Ma for the early basic rock is consistent with those of previous studies which had shown that the early basic rock in the Funing area was associated with the Emeishan mantle plume. The ~(206)Pb/~(238)U age of 219.9±6.6 Ma(MSWD=1.2) for the late basic rock suggest that it is significantly different from the early basic rock. The study on the major, trace, and rare earth elements of the late basic rock shows that there could be subduction material contamination for the magma which was a mixture of melts derived from the partial melting of the enriched lithospheric mantle(E-MORB) and the depleted lithospheric mantle(N-MORB). Combined with previous researches on the tectonic activity in the region, it was concluded that the late basic rock was derived from the mantle and contaminated by subduction materials. A comprehensive study of mineralography and geochemistry shows that the basic rocks of two stages had contribution to the formation of gold deposits. The early basic rock played a limited role for the gold mineralization. Due to the age of the late basic rock is roughly coincided with the metallogenic ages of several large gold deposits in the region, with the combination of the geochemical analyses and previous studies, it is believed that the late basic rock has provided not only ore-forming materials mainly extracted from strata, but also an important heat source for the metallogenic fluid circulation and mineralization. Together with superposed mineralization of frequent tectonic activities on early deposits, several large gold deposits were finally formed in this area. Therefore, we think that the late basic rock could be closely related to the gold mineralization in this region, and it is an important sign for further exploring various sized gold deposits in the area.
引文
[1]涂光炽. 我国西南地区两个别具一格的成矿带(域)[J]. 矿物岩石地球化学通报, 2002, 21(1): 1-2.
    [2]Mcneil A-M,Kerrich R. Archean lamprophyre dykes and gold mineralization, Matheson, Ontario: the conjunction of LILE-enriched mafic magmas, deep crustal structures, and Au concentration[J]. Canadian Journal of Earth Sciences, 1986, 23(3): 324-343.
    [3]Chen Yaohuang,Yao Shuzhen,Pan Yuanming. Geochemistry of lamprophyres at the Daping gold deposit, Yunnan Province, China: Constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2014, 93(1): 129-145.
    [4]Lanjewar Shubhangi,Randive Kirtikumar. Lamprophyres from the Harohalli Dyke Swarm in the Halaguru and Mysore Areas, Southern India: Implication for Backarc Basin Magmatism[J]. Elsevier Ltd, 2017, 157(2): 329-347.
    [5]Gan Ting,Huang Zhilong. Platinum-group element and Re-Os geochemistry of lamprophyres in the Zhenyuan gold deposit, Yunnan Province, China: Implications for petrogenesis and mantle evolution[J]. Elsevier B.V., 2017, 282-283(2): 228-239.
    [6]Yan Yutong,Zhang Na,Li Shengrong,Li Yongsheng. Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China[J]. Geoscience Frontiers, 2014, 5(2): 205-213.
    [7]Groves D I,Goldfarb R J,Gebre-mariam M,Hagemann S G,Robert F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1): 7-27.
    [8]Kovalev K-R.,Kuzmina O-N.,Dyachkov B-A,Vladimirov A-G,Kalinin Yu-A,Naumov E-A,Kirillov M-V,Annikova I-Yu. Disseminated gold-sulfide mineralization at the Zhaima deposit, eastern Kazakhstan[J]. Pleiades Publishing, 2016, 58(2): 116-133.
    [9]皮桥辉,胡瑞忠,彭科强,吴建标,韦朝文,黄勇. 云南富宁者桑金矿床与基性岩年代测定——兼论滇黔桂地区卡林型金矿成矿构造背景[J]. 岩石学报, 2016, 32(11): 3331-3342.
    [10]苏文超,杨科佑,胡瑞忠,陈丰. 中国西南部卡林型金矿床流体包裹体年代学研究——以贵州烂泥沟大型卡林型金矿床为例[J]. 矿物学报, 1998, 18(3): 359-362.
    [11]陈阳阳,陈兵. 黔西南水银洞卡林型金矿地质地球化学特征及成因[J]. 中国地质调查, 2016, 3(2): 10-14.
    [12]庞保成,林畅松. 滇黔桂地区微细浸染型金矿成因的地球化学制约[J]. 地学前缘, 2000, 7(3): 38.
    [13]Chen Maohong,Zhang Zhiqiang,Santosh M,Dang Yuan,Zhang Wei. The Carlin-type gold deposits of the “golden triangle” of SW China: Pb and S isotopic constraints for the ore genesis[J]. Journal of Asian Earth Sciences, 2015, 103(1): 115-128.
    [14]Ressel M-W. Igneous Geology of the Carlin Trend, Nevada: Development of the Eocene Plutonic Complex and Significance for Carlin-Type Gold Deposits[J]. Economic Geology, 2006, 101(2): 347-383.
    [15]Sillitoe R-H. Special Paper: Major Gold Deposits and Belts of the North and South American Cordillera: Distribution, Tectonomagmatic Settings, and Metallogenic Considerations[J]. Economic Geology, 2008, 103(4): 663-687.
    [16]张静,苏蔷薇,刘学飞,和中华,周云满,李智,赵凯. 滇东南老寨湾金矿床地质及同位素特征[J]. 岩石学报, 2014, 30(9): 2657-2668.
    [17]FENG Jianzhong, WANG Dongbo, WANG Xueming,ZENG Yishan , LI Tiefeng. Magmatic Gold Mineralization in the Western Qinling Orogenic Belt: Geology and Metallogenesis of the Baguamiao, Liba and Xiaogouli Gold Deposits[J]. Acta Geologica Sinica, 2004, 78(2): 529-533.
    [18]何鸿,韦龙明,张寿庭,高阳,徐毅. 陕西八卦庙金矿床成矿流体He、Ar、H、O同位素特征[J]. 黄金, 2009, 30(8): 9-11.
    [19]文志林,邓腾,董国军,邹凤辉,许德如,王智琳,林舸,陈根文. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 2016, 7(2): 281-294.
    [20]毛景文,李延河,李红艳,王登红,宋鹤彬. 湖南万古金矿床地幔流体成矿的氦同位素证据[J]. 地质论评, 1997, 43(6): 646-649.
    [21]周余国,刘继顺,王作华,欧阳玉飞,高启芝,刘德利,黄元有. 从滇黔桂“金三角”区域地层地球化学演化特征探讨卡林型金矿的物质来源[J]. 地学前缘, 2009, 16(2): 199-208.
    [22]贾大成,胡瑞忠. 滇黔桂地区卡林型金矿床成因探讨[J]. 矿床地质, 2001, 20(4): 378-384.
    [23]Zhai Mingguo,Santosh M.. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth[J]. Gondwana Research, 2013, 24(1): 275-297.
    [24]Li Lin,Li Sheng-Rong,Santosh M.,Li Qing,Gu Yue,Lü Wen-Jie,Zhang Hua-Feng,Shen Jun-Feng,Zhao Guo-Chun. Dyke swarms and their role in the genesis of world-class gold deposits: Insights from the Jiaodong peninsula, China[J]. Journal of Asian Earth Sciences, 2016, 130(1): 2-22.
    [25]Bierlein F-P,Arne D-C,Mcknight S,Lu J,Reeves S,Besanko J,Marek J,Cooke D. Wall-Rock Petrology and Geochemistry in Alteration Halos Associated with Mesothermal Gold Mineralization, Central Victoria, Australia[J]. Economic Geology, 2000, 95(2): 283-311.
    [26]Zhu RiXiang,Fan HongRui,Li JianWei,Meng QingRen,Li ShengRong,Zeng QingDong. Decratonic gold deposits[J]. Science China Press, 2015, 58(9): 1523-1537.
    [27]Zhao Hai-Xiang,Frimmel Hartwig-E.,Jiang Shao-Yong,Dai Bao-Zhang. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis[J]. Ore Geology Reviews, 2011, 43(1): 142-153.
    [28]Nie F,Jiang S,Hou W,Liu Y,Xiao W,Language Original. Geological features and genesis of gold deposits hosted by low-grade metamorphic rocks in central-western Inner Mongolia[J]. Mineral deposits., 2010, 29(1): 58-70.
    [29]聂凤军,江思宏,侯万荣,刘翼飞,肖伟. 内蒙古中西部浅变质岩为容矿围岩的金矿床地质特征及形成过程[J]. 矿床地质, 2010, 29(1): 58-70.
    [30]邵有元. 1:20万富宁幅区域地质研究报告[R], 1978.
    [31]王迎春,张小兵,秦辉. 广南—富宁微细浸染型金矿分类及代表性矿床[J]. 云南地质, 2013, 32(3): 259-263.
    [32]李政林,刘希军,时毓,吴伟男,姚野,梁琼丹,闫海忠,谭森. 右江盆地南缘二叠-三叠纪基性岩研究及其与金矿的成矿关系探讨[J]. 矿物学报, 2015, (S1): 227-228.
    [33]王忠诚,吴浩若,邝国敦. 桂西晚古生代海相玄武岩的特征及其形成环境[J]. 岩石学报, 1997, 13(2): 135-140.
    [34]吴根耀,吴浩若,钟大赉,邝国敦,季建清. 滇桂交界处古特提斯的洋岛和岛弧火山岩[J]. 现代地质, 2000, 14(4): 393-400.
    [35]侯清亚,傅保国,康云骥. 广西右江盆地南部岩浆岩的大地构造特征[C]//地球科学与资源环境——华南青年地学学术研讨会论文集, 2003: 33-37.
    [36]丘元禧,张伯友. 华南古特提斯东延问题的探讨[J]. 中国区域地质, 2000, 19(2): 175-180.
    [37]Cai Jian-Xin,Zhang Kai-Jun. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 2009, 467(1): 35-43.
    [38]徐伟,刘玉平,郭利果,叶霖,皮道会,廖震. 滇东南八布蛇绿岩地球化学特征及构造背景[J]. 矿物学报, 2008, 28(1): 6-14.
    [39]张锦泉,蒋廷操. 右江三叠纪弧后盆地沉积特征及盆地演化[J]. 广西地质, 1994, 7(2): 1-14.
    [40]方维萱,张海,贾润幸. 滇桂个旧-那坡三叠纪弧后裂谷盆地动力学与成矿序列[J]. 大地构造与成矿学, 2011, 35(4): 552-566.
    [41]QIN Xiaofeng, WANG Zongqi, ZHANG Yingli, PAN Luozhong. Geochemistry of Permian Mafic Igneous Rocks from the Napo-Qinzhou Tectonic Belt in Southwest Guangxi, Southwest China_ Implications for Arc-Back Arc Basin Magmatic Evolution[J]. Acta Geologica Sinica(English Edition), 2012, 85(5): 1182-1199.
    [42]范蔚茗,王岳军,彭头平,苗来成,郭峰. 桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束[J]. 科学通报, 2004, 49(18): 1892-1900.
    [43]廖帅,刘希军,时毓,黄文龙,郭琳. 地幔柱与岛弧岩浆相互作用的产物:来自桂西辉绿岩型金矿中基性岩证据[J]. 矿物学报, 2013, 49(S2): 111-113.
    [44]Yang Jianghai,Cawood P-A,Du Yuansheng,Huang Hu,Hu Lisha. Detrital record of Indosinian mountain building in SW China: Provenance of the Middle Triassic turbidites in the Youjiang Basin[J]. Tectonophysics, 2012, 574-575(1): 105-117.
    [45]宋博,闫全人,向忠金,陈辉明,马铁球,杨广元. 广西凭祥中三叠世盆地沉积特征与构造属性分析[J]. 地质学报, 2013, 87(4): 453-473.
    [46]仕竹焕,杨云保. 初论滇东南地区微细粒型金矿找矿标志[J]. 西部探矿工程, 2007, (5): 65-68.
    [47]代鸿章,陈翠华,顾雪祥,李保华,董树义,程文斌. 云南省富宁县者桑金矿床成矿流体特征[J]. 现代地质, 2014, 28(5): 893-904.
    [48]代鸿章,陈翠华,刘家军,张燕,何朝鑫. 云南者桑金矿床元素地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 2015, 34(4): 744-754.
    [49]邵有元. 1∶200000 富宁幅矿产图[Z], 1978.
    [50]张晓静,肖加飞. 桂西北玉凤、巴马晚二叠世辉绿岩年代学、地球化学特征及成因研究[J]. 矿物岩石地球化学通报, 2014, 33(2): 163-176.
    [51]范蔚茗,彭头平,王岳军. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录[J]. 地学前缘, 2009, 16(6): 291-302.
    [52]黄文龙,刘希军,时毓,许继峰,廖帅,郭琳,吴伟男,李政林,梁琼丹. 桂西巴马地区极高Ti/Y值基性岩地球化学特征——来自峨眉山地幔柱高Ti母岩浆?[J]. 地质通报, 2015, 34(Z1): 474-486.
    [53]胡瑞忠,毛景文,范蔚茗,华仁民,毕献武,钟宏,宋谢炎,陶琰. 华南陆块陆内成矿作用的一些科学问题[J]. 地学前缘, 2010, 17(2): 13-26.
    [54]张招崇,王福生,范蔚茗,邓海琳,徐义刚,许继峰,王岳军. 峨眉山玄武岩研究中的一些问题的讨论[J]. 岩石矿物学杂志, 2001, 20(3): 239-246.
    [55]张宏福,周新华,范蔚茗,孙敏,郭锋,英基丰,汤艳杰,张瑾,牛利锋. 华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理[J]. 岩石学报, 2005, 21(4): 1271-1280.
    [56]李杰,梁细荣,董彦辉,涂湘林,许继峰. 利用多接收器电感耦合等离子体质谱仪(MC-ICPMS)测定镁铁-超镁铁质岩石中的铼-锇同位素组成[J]. 地球化学, 2007, 36(2): 153-160.
    [57]谢建成,杨晓勇,杜建国,孙卫东. 铜陵地区中生代侵入岩LA-ICP-MS锆石U-Pb年代学及Cu-Au成矿指示意义[J]. 岩石学报, 2008, 24(8): 1782-1800.
    [58]Zhou M,Zhao J,Qi L,Su W,Hu R. Zircon U-pb Geochronology and Elemental and Sr-nd Isotope Geochemistry of Permian Mafic Rocks in the Funing Area, Sw China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 1-19.
    [59]李政林,刘希军,许继峰,康志强,时毓,黄文龙,陈雪峰,吴伟男,梁琼丹,姚野. 右江盆地基性岩的地球化学演化特征及其区域构造意义[J]. 桂林理工大学学报, 2015, 35(4): 727-735.
    [60]张斌辉,丁俊,张林奎,张彬,陈敏华. 滇东南八布蛇绿岩的SHRIMP锆石U-Pb年代学研究[J]. 地质学报, 2013, 87(10): 1498-1509.
    [61]陈泽超,林伟,Faure Michel,Lepvrier Claude,褚杨,王清晨. 越南东北部早中生代构造事件的年代学约束[J]. 岩石学报, 2013, 29(5): 1825-1840.
    [62]周文龙,李波,黄庆,刘明. 富宁基性岩区尾硐铜镍硫化物矿床矿化特征及矿床成因探讨[J]. 科学技术与工程, 2013, 13(20): 5908-5914.
    [63]张建强. 云南者桑金矿矿石特征和金赋存状态研究[J]. 华南地质与矿产, 2014, 30(4): 383-388.
    [64]陈赶良,杨柏林. 滇黔桂地区金矿空间分布的分形特征[J]. 地质找矿论丛, 1996, 11(2): 44-50.
    [65]刘建明,刘家军. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 1997, 17(4): 448-456.
    [66]石能学,李旭俊,张树鹏. 富宁渭林金矿矿化富集规律[J]. 云南地质, 2011, 30(2): 129, 134-137.
    [67]国家辉. 滇东南桂西北微细粒型金矿成矿作用探讨[J]. 矿床地质, 2002, 21(S1): 121-124.
    [68]刘建明,叶杰,刘家军,顾雪祥. 论我国微细浸染型金矿床与沉积盆地演化的关系——以右江盆地为例[J]. 矿床地质, 2001, 20(4): 367-377.
    [69]陈翠华,何彬彬,顾雪祥,刘建明. 右江沉积盆地演化与微细浸染型金矿床成矿作用关系探讨[J]. 地质与勘探, 2004, 40(1): 21-25.
    [70]姚娟,罗梅,任光明,王玉婷. 云南老寨湾金矿床成矿流体的特征[J]. 资源环境与工程, 2008, 22(2): 163-167.
    [71]魏震环,李连生,敬成贵. 云南革档金矿地质特征及成因[J]. 黄金地质科技, 1993, 37(3): 22-28.
    [72]章永梅,顾雪祥,摆祥,刘瑞萍,郑硌,吴程赟,彭义伟. 云南富宁者桑金矿床硫铅同位素地球化学特征与成矿物质来源[J]. 地学前缘, 2013, 20(1): 32-39.
    [73]周永峰. 区域重力资料研究在广西深部地质和成矿预测中的应用[J]. 广西地质, 1993, 6(2): 15-24.
    [74]李连生,敬成贵,魏震环,白崇裕. 云南革档金矿地质地球化学特征及成矿模式[J]. 地质找矿论丛, 1992, 7(4): 24-34.
    [75]张宏宾,黄映聪,赵存法,葛俊逸. 云南省革档金矿流体包裹体地球化学特征[J]. 有色金属(矿山部分), 2010, 62(2): 25-30.
    [76]Qiaohui Pi,Ruizhong Hu,Bin Xiong,Qiuli Li,Richen Zhong. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China[J]. Mineral Deposita, 2017, 52(8): 1179-1190.
    [77]国家辉. 桂西北地区岩浆活动与超微粒型金矿化的关系[J]. 贵金属地质, 2000, 9(3): 133-143.
    [78]胡瑞忠,付山岭,肖加飞. 华南大规模低温成矿的主要科学问题[J]. 岩石学报, 2016, 32(11): 3239-3251.
    [79]Rui-zhong Hu,Wen-chao Su,Xian-wu Bi,Guang-zhi Tu,Hofstra Albert. Geology and geochemistry of Carlin-type gold deposits in China[J]. Mineralium Deposita, 2002, 37(3): 378-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700