生物气溶胶具有显著的宽带消光能力(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Significant broadband extinction abilities of bioaerosols
  • 作者:胡以华 ; 赵欣颖 ; 顾有林 ; 陈曦 ; 王新宇 ; 王鹏 ; 郑之明 ; 董骁
  • 英文作者:Yihua Hu;Xinying Zhao;Youlin Gu;Xi Chen;Xinyu Wang;Peng Wang;Zhiming Zheng;Xiao Dong;State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology;Anhui Province Key Laboratory of Electronic Restriction, National University of Defense Technology;Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences;
  • 英文关键词:bioaerosol;;complex refractive index;;UV to IR;;broadband;;light attenuation
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology;Anhui Province Key Laboratory of Electronic Restriction, National University of Defense Technology;Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences;
  • 出版日期:2019-06-11
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China (61271353 and 60908033);; the Natural Science Foundation of Anhui Province (1408085MKL47)
  • 语种:英文;
  • 页:SCMA201907013
  • 页数:13
  • CN:07
  • ISSN:10-1236/TB
  • 分类号:127-139
摘要
生物气溶胶是大气的重要组成部分,因其吸收和散射效应,可直接影响光辐射特性.当前对于生物气溶胶是否具有宽波段消光特性的研究还不够充分.本文中,我们测量了12种常见生物材料在240 nm–14μm波段内的反射光谱,并结合K-K算法计算了不同生物气溶胶材料的复折射率.我们发现,不同种质生物气溶胶的吸收峰具有共性,位于约0.7, 2.7, 6.1和9.5μm处.基于烟幕箱中生物气溶胶漂浮状态实际结构的照片,我们构建了模型计算240 nm–14μm波长范围内生物气溶胶的消光能力.以AN02孢子为例,我们发现吸收作用占AN02孢子群消光总量的90%以上.此外,我们对比了生物气溶胶理论计算透过率与大型烟幕箱实测透射率数据,理论计算和实验验证都显示生物气溶胶在紫外到红外波段具有显著的宽波段消光能力.这一发现为宽波段消光材料的发展提供了新的研究方向.
        Bioaerosol, an important constituent of the atmosphere, can directly affect light radiation characteristics due to absorption and scattering effects. Current research lacks a reasonable explanation for the extinction abilities of bioaerosols in a broadband. Herein, we measured the reflectance spectra of 12 common biomaterials and calculated their complex refractive indexes. The peaks of the imaginary part of the complex refractive indexes are located at wavelengths of approximately 0.7, 2.7, 6.1 and 9.5 μm. Based on photographs of the floating structures of bioaerosols, we constructed a model for calculating the extinction abilities of bioaerosols in the wavelength range of 240 nm to 14 μm.Taking AN02 spores as an example, absorption was found to account for more than 90% of the total extinction. In addition,the theoretical calculations and experimental data of transmittance corresponding to the smoke box show that bioaerosol exhibits significant broadband extinction ability from UV to IR bands, which provides new directions for the development of broadband light attenuation materials.
引文
1 Griffin DW.Atmospheric movement of microorganisms in clouds of desert dust and implications for human health.Clinical MicroBiol Rev,2007,20:459-477
    2 Gilbert Y,Duchaine C.Bioaerosols in industrial environments:a review.Can J Civ Eng,2009,36:1873-1886
    3 Liu W,Zhu X,Lei M,et al.A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana.Sci Bull,2015,60:1332-1347
    4 Wei K,Zheng Y,Li J,et al.Microbial aerosol characteristics in highly polluted and near-pristine environments featuring different climatic conditions.Sci Bull,2015,60:1439-1447
    5 Castillo JA,Staton SJR,Taylor TJ,et al.Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique.Anal Bioanal Chem,2012,403:15-26
    6 Fr?hlich-Nowoisky J,Kampf CJ,Weber B,et al.Bioaerosols in the Earth system:Climate,health,and ecosystem interactions.Atmos Res,2016,182:346-376
    7 Van Leuken JPG,Swart AN,Havelaar AH,et al.Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock-A review to inform risk assessment studies.Microbial Risk Anal,2016,1:19-39
    8 Kenny CM,Jennings SG.Background bioaerosol measurements at mace head.J Aerosol Sci,1998,29:S779-S780
    9 Reid JP,Bertram AK,Topping DO,et al.The viscosity of atmospherically relevant organic particles.Nat Commun,2018,9:956
    10 Després VR,Huffman JA,Burrows SM,et al.Primary biological aerosol particles in the atmosphere:a review.Tellus B-Chem Phys Meteor,2012,64:15598
    11 Matthias-Maser S,Obolkin V,Khodzer T,et al.Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia.Atmos Environ,2000,34:3805-3811
    12 Jaenicke R.Abundance of cellular material and proteins in the atmosphere.Science,2005,308:73
    13 Huffman JA,Sinha B,Garland RM,et al.Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APSfluorescence techniques during AMAZE-08.Atmos Chem Phys,2012,12:11997-12019
    14 Crutzen PJ.Geology of mankind.Nature,2002,415:23
    15 Adams KF,Hyde HA,Williams DA.Woodlands as a source of allergens.Allergy,1968,23:265-281
    16 Sp?nkuch D,D?hler W,Güldner J.Effect of coarse biogenic aerosol on downwelling infrared flux at the surface.J Geophys Res,2000,105:17341-17350
    17 Guyon P,Graham B,Roberts GC,et al.Sources of optically active aerosol particles over the Amazon forest.Atmos Environ,2004,38:1039-1051
    18 Makogon MM.Comparative analysis of spectroscopic methods for remote diagnostics of bioaerosols.Atmos Ocean Opt,2011,24:123-132
    19 Christesen SD,Merrow CN,Desha MS,et al.Ultraviolet fluorescence lidar detection of bioaerosols.SPIE Proc,1994,2222:228-237
    20 Yabushita S,Wada K,Takai T,et al.A spectroscopic study of the microorganism model of interstellar grains.Astrophys Space Sci,1986,124:377-388
    21 Wickramasinghe NC,Wallis MK,Al-Mufti S,et al.The organic nature of cometary grains.Earth Moon Planet,1988,40:101-108
    22 Hoyle F,Wickramasinghe NC,Al-Mufti S.The ultraviolet absorbance of presumably interstellar bacteria and related matters.Astrophys Space Sci,1985,111:65-78
    23 Ligon DA,Wetmore AE,Gillespie PS.Simulation of the passive infrared spectral signatures of bioaerosol and natural fog clouds immersed in the background atmosphere.Opt Express,2002,10:909
    24 Gittins CM,Piper LG,Rawlins WT,et al.Passive and active standoff infrared detection of bio-aerosols.Field Analyt Chem Technol,1999,3:274-282
    25 Gurton KP,Ligon D,Kvavilashvili R.Measured infrared spectral extinction for aerosolized Bacillus subtilis var niger endospores from 3 to 13μm.Appl Opt,2001,40:4443-4448
    26 Yabushita S,Wada K.The infrared and ultraviolet absorptions of micro-organisms and their relation to the Hoyle-Wickramashinghe hypothesis.Astrophys Space Sci,1985,110:405-411
    27 Wang P,Liu H,Zhao Y,et al.Electromagnetic attenuation characteristics of microbial materials in the infrared band.Appl Spectrosc,2016,70:1456-1463
    28 Liu H,Wang P,Hu Y,et al.Optimised fermentation conditions and improved collection efficiency using dual cyclone equipment to enhance fungal conidia production.Biocontrol Sci Tech,2015,25:1011-1023
    29 Liu H,Zhao X,Guo M,et al.Growth and metabolism of Beauveria bassiana spores and mycelia.BMC Microbiol,2015,15:267-279
    30 Segal-Rosenheimer M,Linker R.Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform.J Quantitative Spectr Radiative Transfer,2009,110:1147-1161
    31 Booij HC,Thoone GPJM.Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities.Rheol Acta,1982,21:15-24
    32 Grosse P,Offermann V.Analysis of reflectance data using the Kramers-Kronig relations.Appl Phys A,1991,52:138-144
    33 Poelman D,Frederic Smet P.Methods for the determination of the optical constants of thin films from single transmission measurements:a critical review.J Phys D-Appl Phys,2003,36:1850-1857
    34 Zhao X,Hu Y,Gu Y.The infrared spectral transmittance of Aspergillus Niger spore aggregated particle swarm.SPIE Proc,2015,9678:1717
    35 Sun D,Hu Y,Gu Y,et al.Determination and model construction of microbes’complex refractive index in far infrared band.Acta Phys Sin,2013,62:268-276
    36 Li L,Hu Y,Chen W,et al.Measurement and analysis on complex refraction indices of pear pollen in infrared band.Spectrosc Spectr Anal,2015,35:89-92
    37 Sun D,Hu Y,Wang Y,et al.Sub-microstructures’influences on cell’s scattering prosperities.Acta Phot Sin,2013,42:710-714
    38 Sun D,Hu Y,Gu Y,et al.Preparation and performance testing of metallic biologic particles.Acta Phot Sin,2013,42:555-558
    39 Sun D,Hu Y,Li L.Test and analysis of infrared and microwave characteristics of metallic farinas.Infrared Laser Eng,2013,42:2531-2535
    40 Gu Y,Wang C,Yang L,et al.Infrared extinction before and after Aspergillus niger spores inactivation.Infrared Laser Eng,2015,44:36-41
    41 Li L,Hu Y,Gu Y,et al.Infrared extinction performance of Aspergillus niger spores.Infrared Laser Eng,2014,43:2176-2180
    42 Li L,Hu Y,Gu Y,et al.Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials.Appl Spectrosc,2017,71:2555-2562
    43 Gu Y,Hu Y,Zhao X,et al.Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3-5 micrometers.Opt Express,2018,26:15842
    44 Zhao X,Hu Y,Gu Y.Transmittance of laser in the microorganism aggregated particle Swarm.Acta Optica Sin,2015,35:222-228
    45 Yurkin MA,Hoekstra AG.The discrete dipole approximation:An overview and recent developments.J Quantitat Spectr Rad Transfer,2007,106:558-589
    46 Li C,Xiong H.3D simulation of the Cluster-Cluster aggregation model.Comput Phys Commun,2014,185:3424-3429
    47 Draine BT,Flatau PJ.Discrete-dipole approximation for scattering calculations.J Opt Soc Am A,1994,11:1491-1499
    48 Flatau PJ,Draine BT.Fast near field calculations in the discrete dipole approximation for regular rectilinear grids.Opt Express,2012,20:1247-1252
    49 Kinnunen M,Kauppila A,Karmenyan A,et al.Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level.Biomed Opt Express,2011,2:1803
    50 Dong J,Zhao JM,Liu LH.Effect of spine-like surface structures on the radiative properties of microorganism.J Quantit Spectr Radiat Transfer,2016,173:49-64
    51 Lee E,Heng RL,Pilon L.Spectral optical properties of selected photosynthetic microalgae producing biofuels.J Quantit Spectr Radiat Transfer,2013,114:122-135
    52 Lattuada M,Wu H,Morbidelli M.Radial density distribution of fractal clusters.Chem Eng Sci,2004,59:4401-4413
    53 Kozasa T,Blum J,Okamoto H,et al.Optical properties of dust aggregates I.Wavelength dependence.Astron Astrophys,1992,263:423-432
    54 Kozasa T,Blum J,Okamoto H,et al.Optical properties of dust aggregates II.Angular dependence of scattered light.Astron Astrophys,1993,276:278-288
    55 Min M,Dominik C,Hovenier JW,et al.The 10 m amorphous silicate feature of fractal aggregates and compact particles with complex shapes.Astron Astrophys,2006,445:1005-1014
    56 Huang C,Wu Z,Liu Y,et al.Effect of porosity on optical properties of aerosol aggregate particles.Acta Optica Sin,2013,33:129001
    57 Draine BT.The discrete-dipole approximation and its application to interstellar graphite grains.Astrophys J,1988,333:848-872
    58 Jacques SL.Modeling tissue optics-using Monte Carlo modeling a tutorial.SPIE Proc,2008,6854:1-9
    59 Wang L,Jacques SL,Zheng L.MCML-Monte Carlo modeling of light transport in multi-layered tissues.Comput Methods Programs Biomed,1995,47:131-146
    60 Zhao X,Hu Y,Gu Y,et al.Transmittance of laser in the microorganism aggregated particle swarm.Acta Phot Sin,2015,35:0616001
    61 Liu J,Zeng Y,Yang C.Light scattering study of biological cells with the discrete dipole approximation.Infrared Laser Eng,2014,43:2204-2208
    62 Jin S,Chen H.Near-infrared analysis of the chemical composition of rice straw.Industrial Crops Products,2007,26:207-211
    63 Cao S,Zhao Y.Application of molecular absorption spectrophotometric method to the determination of biologic macromolecular structures.Spectrosc Spect Anal,2004,24:1197-1201
    64 Lin X,Pan Y,Guo Y,et al.The study of cervical cancer cells model based on UV absorption spectrum.Spectrosc Spect Anal,2009,29:2547-2550
    65 Susi H,Byler DM.Fourier transform infrared study of proteins with parallelβ-chains.Archives Biochem Biophys,1987,258:465-469
    66 Li D,Yan C,Hu F,et al.Studied on simulation spectra of protein secondary structures by two-dimensional infrared correlation spectroscopy.J Light Scatt,2013,25:417-422
    67 Saito I,Sugiyama H,Matsuura T.Photochemical reactions of nucleic acids and their constituents of photobiological relevance.Photochem Photobiol,1983,38:735-743
    68 del Pozo JM,Díaz L.A comparison of methods for the determination of optical constants of thin films.Thin Solid Films,1992,209:137-144
    69 Li J,An W,Zhu T.The development of measurement and calculation model of the medium complex-refractive index.Energy Conserv Technol,2017,35:214-219
    70 Zhong D,Wang L,Yu Y.Optical constants measurement of thin film by spectrophotometry.J Liaoning Univ Natl Sci Ed,1996,23:1-13
    71 Pekker D.A method for determining thickness and optical constants of absorbing thin films.Thin Solid Films,2003,425:203-209
    72 Wu Q.Ellipsometry of measuring for optical constant of an absorbing film.J Zhejiang Univ,1982,16:1-7
    73 Li C.Absorption and scattering of optical films.J Applied Optics,1982,3:3-13
    74 Bailey GF,Karp S,Sacks LE.Ultraviolet-absorption spectra of dry bacterial spores.J Bacteriol,1965,99:984-987
    75 Inagaki T.Optical absorptions of aliphatic amino acids in the far ultraviolet.Biopolymers,1973,12:1353-1362
    76 Tuminello PS,Arakawa ET,Khare BN,et al.Optical properties of Bacillus subtilis spores from 0.2 to 25μm.Appl Opt,1997,36:2818-2824
    77 Arakawa ET,Tuminello PS,Khare BN,et al.Optical properties of horseradish peroxidase from 0.13 to 2.5μm.Biospectroscopy,1997,3:73-80
    78 Emerson LC,Williams MW,Tang I,et al.Optical properties of guanine from 2 to 82 eV.Radiat Res,1975,63:235-244
    79 Hill SC,Doughty DC,Pan YL,et al.Fluorescence of bioaerosols:mathematical model including primary fluorescing and absorbing molecules in bacteria:errata.Opt Express,2014,22:22817
    80 Yabushita S,Wada K,Inagaki T,et al.Photometric and photo accoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis.Astrophys Space Sci,1985,117:401-406
    81 Hoyle F,Wickramasinghe NC,Al-Mufti S.The measurement of the absorption properties of dry micro-organisms and its relationship to astronomy.Astrophys Space Sci,1985,113:413-416
    82 Draine BT,Flatau PJ.User Guide for the Discrete Dipole Approximation Code.DDSCAT 7.3,2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700