Buserite型氧化锰催化叔丁基过氧化氢歧化分解反应动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chemical Kinetics of Disproportionation Decomposition of tert-Butyl Hydroperoxide Catalyzed by Buserite-type Manganese Oxides
  • 作者:卢书培 ; 冯利利 ; 齐麟 ; 王丽丽 ; 齐兴义
  • 英文作者:LU Shu-Pei;FENG Li-Li;QI Lin;WANG Li-Li;QI Xing-Yi;School of Chemistry and Environment, Beihang University;Key Laboratory of Urban Stormwater System and Water Environment of Ministry of Education, Beijing University of Civil Engineering and Architecture;
  • 关键词:Buserite型氧化锰 ; 叔丁基过氧化氢 ; 叔丁醇 ; 歧化分解 ; 反应动力学
  • 英文关键词:buserite-type layered manganese oxides;;tert-butyl hydroperoxide;;tert-butyl alcohol;;disproportionation decomposition;;chemical kinetics
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:北京航空航天大学化学与环境学院;北京建筑大学城市雨水系统与水环境教育部重点实验室;
  • 出版日期:2015-12-15 15:03
  • 出版单位:无机材料学报
  • 年:2016
  • 期:v.31;No.194
  • 基金:国家自然科学基金(51206009)~~
  • 语种:中文;
  • 页:WGCL201601003
  • 页数:7
  • CN:01
  • ISSN:31-1363/TQ
  • 分类号:17-23
摘要
以MnSO_4·H_2O为锰源,K_2S_2O_8为氧化剂,制备了4种含有不同层间阳离子(Me,Me=Mg~(2+)、Co~(2+)、Ni~(2+)、Cu~(2+))的buserite型氧化锰(Me-buserites)。采用X射线衍射(XRD)、电感耦合等离子体原子发射(ICP-AES)和N2吸附–脱附(BET)对制成Me-buserites的晶相结构、元素组成和比表面积进行了表征。采用25 m L间歇式玻璃反应器,考察了Me-buserites催化叔丁基过氧化氢歧化分解反应动力学。反应动力学分析表明:反应底物叔丁基过氧化氢浓度项反应级数为2,Me-buserites形式浓度项反应级数为1,总反应级数为3;表观活化能为56~125 k J/mol。与动力学拟合结果相一致的反应机理是由前置平衡和速控两个反应步骤组成。基于338 K反应温度准二级速率常数和0.5 h反应时间累积O_2体积决定的活性顺序为Cu-buserite>Mg-buserite>Ni-buserite>Co-buserite;在选定反应条件下,所有Mebuserites的叔丁醇选择性均为100%。
        The series of four buserite-type layered manganese oxides(Me-buserites) with different interlayer cations(Me, Me = Mg~(2+), Co~(2+), Ni~(2+), Cu~(2+)) were synthesized by using both MnSO_4·H_2O as Mn source and K_2S_2O_8 as oxidant. The as-synthesized Me-buserites were characterized by X-ray diffraction(XRD), inductively coupled plasma-atomic emission spectrometry(ICP-AES) and N_2 adsorption-desorption(BET), in order to determine their crystal phases, elemental compositions and specific surface areas, respectively. In a 25 m L batch glass reactor, the disproportionation decomposition of tert-butyl hydroperoxide was kinetically investigated with the above Me-buserites as catalysts. The kinetic analyses show that the rate law established herein is second order in tert-butyl hydroperoxide, first order in Me-buserites and then third order overall, and that the apparent activation energy ranges from 56 k J/mol to 125 k J/mol. In accordance with the kinetic fittings, the proposed mechanism comprises two elementary reaction steps: pre-equilibrium step and rate-determining step. In terms of the pseudo-second-order rate constant and the half an hour-accumulated O_2 volume(both obtained at 338 K), the activity follows the order of Cu-buserite > Mg-buserite > Ni-buserite > Co-buserite. And a 100% selectivity towards tert-butyl alcohol is achieved over all the Me-buserites un-der selected reaction conditions.
引文
[1]SCHWEGMAN J J,HARDWICK L M,AKERS M J.Practical formulation and process development of freeze-dried products.Pharmaceutical Development&Technology,2005,10(2):151–173.
    [2]SALANITRO J P.Understanding the limitations of microbial metabolism of ethers used as fuel octane enhancers.Current Opinion in Biotechnology,1995,6(3):337–340.
    [3]MENEZES E W D,CATALUNA R,SAMIOS D,et al.Addition of an azeotropic ETBE/ethanol mixture in euro super-type gasolines.Fuel,2006,85:2567–2577.
    [4]SHI FENG,XIONG HAI,GU YAN-LONG,et al.The first non-acid catalytic synthesis of tert-butyl ether from tert-butyl alcohol using ionic liquid as dehydrator.Chemical Communications,2003,34(33):1054–1055.
    [5]MIMOUN H,MIGNARD M,BRECHOT P,et al.Selective epoxidation of olefins by oxo[N-(2-oxidophenyl)salicylidenaminato]vanadium(V)alkylperoxides.On the mechanism of the Halcon epoxidation process.Journal of the American Chemical Society,1986,108(13):3711–3718.
    [6]WINKLER D E,HEARNE G W.Liquid phase oxidation of isobutane.Industrial&Engineering Chemistry,1961,53(8):655–658.
    [7]COYLE J J.Decomposition of Hydroperoxides in Propylene Epoxidation Reaction product.U.S.Patent NO.4059598,1977.
    [8]DIXIT P S,SRINIVASAN K.The effect of clay-support on the catalytic epoxidation activity of a manganese(III)-Schiff base complex.Inorganic Chemistry,1988(24):4507–4509.
    [9]RIAHI A,HENIN F,MUZART J.Homogeneous chromium(VI)-catalyzed oxidations of allylic alcohols by alkyl hydroperoxides:influence of the nature of the alkyl group on the product distribution.Tetrahedron Letters,1999,40(12):2303–2306.
    [10]STOJANOVA M,KARSHALYKOV C,KANAZIREV V,et al.On the reactivity of H-,Ga-and Cu-MFI zeolites towards t-butyl hydroperoxide(TBHP).Applied Catalysis A General,1996,143(1):175–183.
    [11]ROTHENBERG G,WIENER H,SASSON Y.Pyridines as bifunctional co-catalysts in the Cr O3-catalyzed oxygenation of olefins by t-butyl hydroperoxide.Journal of Molecular Catalysis A Chemical,1998,136:253–262.
    [12]HOUGHTON R P,RICE C R.Cobalt(II)-catalysed decomposition of hydroperoxides.Implications for alkane functionalization.Polyhedron,1996,15(11):1893–1897.
    [13]TURRA N,NEUENSCHWANDER U,BAIKER A,et al.Mecha-nism of the catalytic deperoxidation of tert-butyl hydroperoxide with cobalt(II)acetylacetonate.Chemistry-A European Journal,2010,16(44):13226–13235.
    [14]WEST Z J,ADAMS R K,ZZBARNICK S.Homogeneous catalysis of liquid-phase hydroperoxide decomposition in hydrocarbons.Energy Fuels,2011,25(3):897–904.
    [15]YADAV G D,ASTHANA N S.Selective decomposition of cumene hydroperoxide into phenol and acetone by a novel cesium substituted heteropolyacid on clay.Applied Catalysis A General,2003,244(2):341–357.
    [16]LUO Y,MAEDA S,OHNO K.Decomposition of alkyl hydroperoxide by a copper(I)complex:insights from density functional theory.Tetrahedron Letters,2008,49:6841–6845.
    [17]RYAN P,KONSTANTINOV I,SNURR R Q,et al.DFT investigation of hydroperoxide decomposition over copper and cobalt sites within metal-organic frameworks.Journal of Catalysis,2012,286(4):95–102.
    [18]KNIFTON J F.Method for One-step Synthesis of Methyl t-butyl ether.U.S.Patent NO.4827048,1989.
    [19]CUI H,LIU X,TAN W,et al.Influence of Mn(III)availability on the phase transformation from layered buserite to tunnel-structured todorokite.Clays&Clay Minerals,2008,56(4):397–403.
    [20]WONG S T,CHENG S.Pillared layered manganese oxide synthesis and redox properties.Journal of Thermal Analysis,1993,40:1181–1192.
    [21]WONG S T,CHENG S.Catalytic properties of layered and pillared buserites.Journal of the Chinese Chemical Society,1993,40:509–516.
    [22]YANG MING,LING QIANG,YANG HONG-XIAO,et al.Enhanced catalytic activity of K-birnessite Mn O2 confined in carbon nanotubes for selective oxidation of benzyl alcohol.Catalysis Communications,2014,46:238–241.
    [23]WIECHEN M,ZAHARIEVA I,DAU H,et al.Layered manganese oxides for water-oxidation:alkaline earth cations influence catalytic activity in a photosystem II-like fashion.Chemical Science,2012,7(7):2330–2339.
    [24]IYER A,DEL-PILAR J,KING’ONDU C K,et al.Water oxidation catalysis using amorphous manganese oxides,octahedral molecular sieves(OMS-2),and octahedral layered(OL-1)manganese oxide structures.The Journal of Physical Chemisry C,2012,116(10):6474–6483.
    [25]ATRIBAK I,BUENO-LOPEZ A,GARCIA-GARCIA A,et al.Catalytic activity for soot combustion of birnessite and cryptomelane.Applied Catalysis B Environmental,2010,93(3/4):267–273.
    [26]ZHANG XUAN-XUAN,RAN FEN,FAN HUI-LI,et al.Hydrothermal synthesis and electrochemical measurements of interconnected porous carbon/Mn O2 composites.Acta Physico-Chimica Sinca,2014,30(5):881–890.
    [27]SUN ZHENJIE,SHU DONG,CHEN HONGYU,et al.Microstructure and supercapacitive properties of buserite-type manganese oxide with a large basal spacing.Journal of Power Sources,2012,216(11):425–433.
    [28]ATHOUEL L,MOSER F,DUGAS R,et al.Variation of the Mn O2birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte.Journal of Physical Chemistry C,2008,112(18):7270–7277.
    [29]GHODBANE O,PASCAL J L,FAVIER F.Microstructural effects on charge-storage properties in Mn O2-based electrochemical supercapacitors.Acs Applied materials&Interfaces,2009,1(5):1130–1139.
    [30]RAMALINGAM K,KAMATCHI T,SUMOD P.Synthesis,spectral,thermal and CO2 absorption studies on birnessites type layered Mn O6 oxide.Transition Metal Chemistry,2006,31(4):429–433.
    [31]CHING S,KRUKOWSKA K S,SUIB S L.A new synthetic route to todorokite-type manganese oxides.Inorganica Chimica Acta,1999,294(2):123–132.
    [32]MA Y,LUO J,SUIB S L.Syntheses of birnessites using alcohols as reducing reagents:effects of synthesis parameters on the formation of birnessites.Chemistry of Materials,1999,11(8):1972–1979.
    [33]MAIR R D,GRAYPNER A J.Determination of organic peroxides by iodine liberation procedures.Analytical Chemistry,1964,36(1):194–204.
    [34]LIU Y,TSUNOYAMA H,AKITA T,et al.Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite.Chemical Communications,2010,46(4):550–552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700