基于tilt locking(倾斜锁定)技术的一种锁腔方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Locking Cavity Method Based on Tilt locking Technology
  • 作者:郝冬冬 ; 翟泽辉 ; 贾鑫 ; 刘志强 ; 郭娟
  • 英文作者:HAO Dong-dong;ZHAI Ze-hui;JIA Xin;LIU Zhi-qiang;GUO Juan;School of Physics and Electronic Engineering,Shanxi University;
  • 关键词:光电探测器 ; 干涉 ; 高阶空间模式 ; 相位基准 ; 障碍物
  • 英文关键词:photodeterctor;;interfere;;High-order space mode;;phase reference;;obstacle
  • 中文刊名:LZGX
  • 英文刊名:Journal of Quantum Optics
  • 机构:山西大学物理电子工程学院;
  • 出版日期:2019-03-18 10:50
  • 出版单位:量子光学学报
  • 年:2019
  • 期:v.25;No.95
  • 基金:国家重点基础研究发展计划(No.2016YFA0301404);; 国家自然科学基金重点项目(91536222)
  • 语种:中文;
  • 页:LZGX201902016
  • 页数:6
  • CN:02
  • ISSN:14-1187/O4
  • 分类号:118-123
摘要
基于空间模式的干涉,tilt-locking技术为稳定激光频率或锁定光学谐振腔提供了一种灵活便捷的方法。在本文中,对tilt-locking技术进行了修改并进行了实验演示。该方法使用非谐振的一阶空间模式TEM_(01)模作为相位参考,并利用TEM_(01)模式和TEM_(00)模式的干涉进行光学腔的锁定。在光学腔的反射光路中添加障碍物以阻挡反射光束的一半。反射光束的通过的一半由单像素光电探测器而不是分离探测器来检测,以导出用于将光学腔的TEM_(00)模式谐振频率锁定到激光频率的误差信号。利用此方法可以将光学腔稳定锁定4 h。
        Based on spatial mode interference,tilt-locking technique is a flexible and convenient way to stabilize laser frequency or to lock optical cavity.In this paper a modification of tilt-locking is described and experimentally demonstrated.The method uses a non-resonant first-order spatial mode TEM_(01) as phase reference,and utilizes the interference of the TEM_(01) mode and the TEM_(00) mode for locking.An obstacle is added in the reflected light path of the optical cavity to block half of the reflected light beam.The passing half of reflected beam is detected by a single-pixel detector,instead of a split detector,to derive the error signal for locking TEM_(00)mode resonant frequency of optical cavity to laser frequency.An optical cavity can be stably locked over four hours with this method.This modification makes tilt-locking technique become more convenient and flexible.
引文
[1] 刘志强,刘建丽,翟泽辉.激光稳频技术的研究及进展[J].量子光学学报,2018,24(02):1-9.DOI:http://dx.doi.org/10.3788/JQO20182402.0901.
    [2] Bondu F,Fritschel P,Mann C N,et al.Ultrahigh-spectral-purity Laser for the VIRGO Experiment[J].Opt Lett,1996,21(8):582-584.DOI:http://dx.doi.org/10.1364/OL.21.000582.
    [3] Grop S,Bourgeois P Y,Bazin N,et al.ELISA:A Cryocooled 10 GHz Oscillator with 10-15 Frequency Stability[J].Review of Scientific Instruments,2010,81(2):480-495.DOI:http://dx.doi.org/10.1063/1.3290631.
    [4] Schneider K,Schiller S,Mlynek J,et al.1.1-W Single-frequency 532 nm Radiation by Second-harmonic Generation of a Miniature Nd:YAG Ring Laser[J].Opt Lett,1996,21(24):1999-2001.DOI:https://doi.org/10.1364/OL.21.001999.
    [5] Kaneda Y,Yarborough J M,Merzlyak Y.CW,Single-frequency 229 nm Laser Source for Cd-cooling by Harmonic Conversion[C].Spie Lase.International Society for Optics and Photonics,2015.DOI:http://dx.doi.org/10.1117/12.2076213.
    [6] Young B C,Cruz F C,Itano W M,et al.Visible Lasers with Subhertz Linewidths[J].Phys Rev Lett,1999,82(82):3799-3802.DOI:http://dx.doi.org/10.1103/PhysRevLett.82.3799.
    [7] Dinesan H,Fasci E,D’Addio A,et al.Characterization of the Frequency Stability of an Optical Frequency Standard at 1.39 μm Based Upon Noise-immune Cavity-enhanced Optical Heterodyne Molecular Spectroscopy[J].Opt Express,2015,23(2):1757-1766.DOI:http://dx.doi.org/10.1364/OE.23.001757.
    [8] Saulson P R.Fundamentals of Interferometric Gravitational Wave Detectors[M].WORLD SCIENTIFIC,1994.DOI:http://dx.doi.org/10.1142/2410.
    [9] Li Y,Zhang X,Li Y.Progress of the Optical Techniques for Laser Interferometer Gravitational Wave Detector[J].Scientia Sinica,2017,47.DOI:http://dx.doi.org/10.1360/SSPMA2016-00297.
    [10] Galzerano G,Marano M,Taccheo S,et al.2.1-microm Lasers Frequency Stabilized Against CO2 Lines:Comparison Between Fringe-side and Frequency-modulation Locking Methods[J].Opt Lett,2003,28(4):248-250.DOI:https://doi.org/10.1364/OL.28.000248.
    [11] Bateman J E,Murray R L D,Himsworth M,et al.H?nsch-Couillaud Locking of Mach-Zehnder Interferometer for Carrier Removal from a Phase-modulated Optical Spectrum[J].J Opt Soc Am B,2010,27(8):1530-1533.DOI:https://doi.org/10.1364/JOSAB.27.001530.
    [12] Vainio,Bernard J E,et al.Cavity-enhanced Optical Frequency Doubler based on Transmission-mode H?nsch-Couillaud Locking[J].Applied Physics B,2011,104(4):897-908.DOI:http://dx.doi.org/10.1007/s00340-011-4437-z.
    [13] White A D.Frequency Stabilization of Gas Lasers[J].IEEE J Quantum Electron,1965,1(8):349-357.DOI:http://dx.doi.org/10.1109/JQE.1965.1072246.
    [14] Wieman C E,Gilbert S L.Laser-frequency Stabilization using Mode Interference from a Reflecting Reference Interferometer[J].Opt Lett,1982,7(10):480-482.DOI:http://dx.doi.org/10.1364/OL.7.000480.
    [15] Zullo R,Giorgini A,Avino S,et al.Laser-frequency Locking to a Whispering-gallery-mode Cavity by Spatial Interference of Scattered Light[J].Opt Lett,2016,41(3):650-652.DOI:http://dx.doi.org/10.1364/OL.41.000650.
    [16] Black E D.An Introduction to Pound-Drever-Hall Laser Frequency Stabilization[J].American Journal of Physics,2001,69(1):79-87.DOI:http://dx.doi.org/10.1119/1.1286663.
    [17] 李健,吴令安.相位调制锁定光学谐振腔[J].光学学报,1995,15(12):1641-1645.DOI:http://dx.doi.org/10.3321/j.issn:0253-2239.1995.12.008.
    [18] 卞正兰,黄崇德,高敏,等.PDH激光稳频控制技术研究[J].中国激光,2012,39(3):1-5.DOI:http://dx.doi.org/10.3788/CJL201239.0302001.
    [19] 兰太和.PDH 技术激光稳频特性研究[D].上海:华东师范大学,2009.DOI:https://doi.org/cdmd.cnki.com.cn/Article/CDMD-10269-2009187153.htm.
    [20] Su J,Jiao M,Xing J,et al.Design of Pound-Drever-Hall laser frequency stabilization system without phase shifter[C] International Symposium on Precision Engineering Measurement & Instrumentation.International Society for Optics and Photonics,2015.DOI:http://dx.doi.org/10.1117/12.2087005.
    [21] Shaddock D A,Gray M B,McClelland D E.Frequency Locking a Laser to an Optical Cavity by Use of Spatial Mode Interference[J].Opt Lett,1999,24(21):1499-1501.DOI:http://dx.doi.org/10.1364/OL.24.001499.
    [22] You Y,Chiche R,Yan L X,et al.High Finesse Pulsed Optical Cavity Locking by Tilt-locking Technique[J].Rev Sci Instrum,2014,85(3):033102-033102-4.DOI:http://dx.doi.org/10.1063/1.4867247.
    [23] Siegman A E.Mill Valley,Calif,Laser[M].University Science books,1986.DOI:10.3390/ijms11062546.
    [24] Feng S,Winful HG.Physical Origin of the Gouy Phase Shift[J].Opt Lett,2001,26(8):485-487.DOI:http://dx.doi.org/10.1364/OL.26.000485.
    [25] Bancelin Stéphane,Van d K J N,Quigley A S,et al.Gouy Phase Shift Measurement using Interferometric Second-harmonic Generation[J].Optics Letters,2018,43(9):1958-1961.DOI:http://dx.doi.org/10.1364/OL.43.001958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700