温度对养殖废水厌氧发酵初期产酸的影响及其原因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of temperature on production of volatile fatty acids in mesophilic anaerobic fermentation of swine wastewater and its cause analysis
  • 作者:史风梅 ; 徐洪涛 ; 卢玢宇 ; 裴占江 ; 王粟 ; 高亚冰 ; 刘杰
  • 英文作者:Shi Fengmei;Xu Hongtao;Lu Binyu;Pei Zhanjiang;Wang Su;Gao Yabing;Liu Jie;Rural Energy Institute of Heilongjiang Academy of Agricultural Sciences;Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture;Heilongjiang Key Laboratory of Energy Utilization of Main Crop Straw Resources;
  • 关键词:废水 ; 温度 ; 发酵 ; 生猪养殖 ; 挥发性脂肪酸
  • 英文关键词:wastewater;;temperature;;fermentation;;pig breeding;;volatile fatty acid
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:黑龙江省农业科学院农村能源研究所;农业部种养循环重点实验室;黑龙江省秸秆能源化重点实验室;
  • 出版日期:2018-11-15
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.350
  • 基金:国家“十三五”重点研发计划课题(2016YFD0501403);; 哈尔滨市科技局青年后备人才项目(RC2017QN002097)
  • 语种:中文;
  • 页:NYGU2018S1007
  • 页数:6
  • CN:S1
  • ISSN:11-2047/S
  • 分类号:48-53
摘要
采用序批式厌氧发酵试验装置,研究了温度对生猪养殖废水厌氧发酵产酸初期影响。利用16rsDNA高通量测序技术研究了不同温度条件下驯化的接种污泥中菌群结构的变化,从而分析温度对厌氧初期挥发性脂肪酸(volatilefattyacids,VFAs)生成的影响。研究结果表明:在中温厌氧条件下,挥发性脂肪酸的产酸效果受厌氧温度的影响。发酵产酸温度提高,有利于厌氧体系有机物的降解以及VFAs生成速率的提高。16rs DNA高通量测序分析结果表明:在中温厌氧条件下,高温驯化有利于梭状芽胞杆菌(Clostridia)、芽胞杆菌(Bacilli)和互营养菌(Synergistia)等菌群丰度的提高,从而提高了厌氧体系纤维素降解以及VFAs的产酸速率。
        As a way of resource utilization of livestock farming wastewater, the production of volatile fatty acids(VFAs) from swine wastewater by anaerobic fermentation has attracted more and more attention. But the production process of VFAs from swine wastewater by anaerobic fermentation anaerobic is necessary to be studied in depth. Temperature is one of the important parameters in the VFAs production process. In order to understand the VFAs production process of swine wastewater thoroughly, the effect of fermentation temperature on the yield of VFAs from swine wastewater were studied in an anaerobic sequencing batch reactors heated in a thermostat water bath at the temperature of 25, 30, 35 and 40 ℃, respectively. The anaerobic fermentation slurry was sampled hourly within 12 h and the samples were taken once a day. The concentration of VFAs was then measured with chemical titration method. The results exhibit that the fermentation temperature affects the VFAs concentration of the system. The concentration of VFAs in the swine wastewater system under mesophilic anaerobic conditions became stable in 8 h. The maximum concentration of VFAs decreased, but the time for VFAs to reach stable became shorter when the fermentation temperature increased from 25 to 40 ℃. It meant that the lower fermentation temperature was favourable to yield VFAs, but higher fermentation temperature shortened the span of VFAs production process. The 16 rsDNA high-throughput sequencing technology was used to study the changes of bacterial community structure in acclimated inoculated sludge in the anaerobic system at different fermentation temperatures. It was found that the Actinobacteria, Proteobacteria, Synergistia and methanogens(including Methanobacteria and Methanomicrobia) which were common microbial communities could be found in anaerobic environment and Clostridia is the dominant bacterium followed by Bacteroidia in all acclimated inoculated sludge samples at different temperatures. The relative abundance of the mixed microbial culture significantly changed at different temperature and it reflected a significant shift in microbial community structure. When the acclimation temperature of anaerobic sludge increased from 25 to 40 ℃, the abundance of Bacteroidia decreased, while the abundance of Clostridia, Bacilli and Synergistia increased. The different suitable living environmental temperature for each bacteria could explain the change of the microbial community abundance in the acclimated inoculated sludge. When the temperature was 25 ℃, it was suitable for Bacteroidia to grow and reproduce, which could use carbohydrates in the system and produce small molecule acids quickly. The temperature was unfavorable to the survival of Synergistia. The VFAs accumulation occured under the combined effect of acidify bacteria and fatty acid-utilizing bacteria. When the temperate increasing, the number of cellulose-degrading bacteria increased, and the hydrolysis rate of cellulose was accelerated. However, the number of bacteria such as Synergistia which could use VFAs also increased. As a result, the concentration of VFAs in the system was reduced and the acid-producing time was shortened. These results meant the increase of temperature could promote the degradation of cellulose in the anaerobic system and the VFAs production rate.
引文
[1]郭惠武.2016年世界生猪产业发展情况及2017年的趋势[J].猪业科学,2017,34(2):44-48.
    [2]郭惠武,张海峰. 2017年世界生猪产业发展情况及2018年的趋势[J].猪业科学,2018,35(2):44-48.
    [3]冷守琴,李康奎,王文杰,等.组合工艺在养猪废水处理中的工程应用研究[J].环境科学与管理,2015,40(5):70-73.Leng Shouqin, Li Kangkui, Wang Wenjie, et al. Combinationtechnologyappliedinswinewastewatertreatmentengineering[J].EnvironmentalScienceandManagement,2015, 40(5):70-73.(in Chinese with English abstract)
    [4]李铭雨.泰安市生猪规模化养殖发展问题研究[D].泰安:山东农业大学,2016.LiMingyu.ResearchonDevelopmentofthePigLarge-scaleBreedinginTai’anCity[D].Taian:ShandongAgriculturalUniversity,2016.(inChinesewithEnglishabstract)
    [5]姚凯儒,罗建.规模化猪场养殖废水研究进展探讨[J].广州化工,2015,43(6):145-147.Yao Kairu, Luo Jian. Research progress on the developmentofwastewaterinlarge-scalepigfarm[J].GuangzhouChemical Industry, 2015, 43(6):145-147.(in Chinese withEnglish abstract)
    [6]王允姝.规模化禽畜养殖场废水处理技术研究进展[J].科技创新导报,2015(23):144-145.WangYunmei.Studyprogressonwastewatertreatmentofintensificationlivestockandpoultrycultivation[J].Scienceand Technology Innovation Herald, 2015(23):144-145.(inChinese with English abstract)
    [7]万风,王海燕,周岳溪,等.养猪废水处理技术研究进展[J].农业灾害研究,2012,2(1):25-29.WanFeng,WangHaiyan,ZhouYuexi,etal.Researchprogressontheprocessingtechnologyofpiggerywastewater[J]. Journal of Agricultural Catastrophology, 2012,2(1):25-29.(in Chinese with English abstract)
    [8]林晖.常州市武进区规模化养殖场污染状况及其环境效应研究[D].南京:南京农业大学,2009.LinHui.ResearchonPollutionStatusandEnvironmentalEffectsofLargescaleLivestockFarminWujinDistrict[D].Nanjing:Nanjing Agriculture University, 2009.(in Chinesewith English abstract)
    [9]王明,孔威,晏水平,等.猪场废水厌氧发酵前固液分离对总固体及污染物的去除效果[J].农业工程学报,2018,34(17):235-240.WangMing,KongWei,YanShuiping,etal.Effectofsolid-liquidseparationonremovaloftotalsolidandpollutantsfrompigmanurewastewaterbeforeanaerobicdigestion[J].TransactionsoftheChineseSocietyofAgriculturalEngineering(TransactionsoftheCSAE),2018,34(17):235-240.(in Chinese with English abstract)
    [10]欧阳婷,王涛,樊华.养猪废水深度治理技术研究进展[J].安徽农业科学,2016,44(35):81-83,112.OuYangting,WangTao,FanHua.Researchprogressoftechnologies for the treatment of swine-breeding Wastewater[J]. Journal of Anhui Agri Sci, 2016, 44(35):81-83, 112.(inChinese with English abstract)
    [11]余晓玲,邓觅,吴永明,等. UASB-两级A/O生态塘组合工艺处理养猪废水[J].给水排水,2018, 44(3):59-63.YuXiaoling,DengMi,WuYongming,etal.Treatmentofswine wasterwater by combined process of UASB-two stageA/O-ecologicalpond[J].Water&WastewaterTreatment,2018, 44(3):59-63.(in Chinese with English abstract)
    [12]段跟定,张胜利. UASB-曝气吹脱-混凝-五段Bardenpho组合工艺处理养猪废水工程案例[J].给水排水,2018,44(2):56-60.
    [13]沈瀚,王亮,李明德,等.填料型A/O工艺处理养猪废水中试研究[J].中国给水排水,2016,32(7):121-125.Shen Han, Wang Liang, Li Mingde, et al. Pilot-scale study onpiggerywastewatertreatmentbyanoxic/oxicprocessmodifiedwithpackings[J].ChinaWater&Wastewater,2016, 32(7):121-125.(in Chinese with English abstract)
    [14]杨乾.DCDS新型养猪场废水处理工艺[J].北方牧业,2017,(10):11-11.
    [15]宋香育,张克强,房芳,等.工艺措施对猪粪秸秆混合厌氧干发酵产气性能的影响[J].农业工程学报,2017,33(11):233-239.SongXiangyu, ZhangKeqiang,FangFang,etal.Influencesofdifferenttechnologicalstrategiesonperformanceofanaerobicco-digestionofpigmanurewithstrawinsolid-state[J].TransactionsoftheChineseSocietyofAgriculturalEngineering(TransactionsoftheCSAE),2017,33(11):233-239.(in Chinese with English abstract)
    [16]李晨艳,乔玮,邵蕾,等.厌氧发酵技术在畜禽养殖粪水处理与资源化中的利用[J].猪业科学,2017,34(5):92-94.
    [17]张自杰.排水工程下册[M].北京:中国建筑工业出版化,2000.
    [18]林琳.pH调控强化猪粪厌氧发酵产酸效能及从发酵液同步回收氮鱗的研究[D].上海:复旦大学,2014.Lin Lin. Enhanced Anaerobic Fermentation of Swine ManurebypHAdjustmentandSimultaneousRecoveryofNitrogenand Phosporous from the Fermentation Liquor[D]. Shanghai:Fudan University, 2014.(in Chinese with English abstract)
    [19]Albuquerque M C, Martino V, Pollet E, et al. Mixed culturepolyhygroxyalkanoate(PHA)productionfromvolatilefattyacid(VFA)-rich streams:Effect of substrate composition andfeedingregimeonPHAproductivity,compositionandproperties[J].JournalofBiotechnology,2011, 151(1):66-76.
    [20]JonGarcia-Aguirre,EnriqueAymerich,JaimeGonzález-Mtnez,etal.SelectiveVFAproductionpotentialfromorganicwastestreams:Assessingtemperatureandp Hinfluence[J].BioresourceTechnology,2017,244:1081-1088.
    [21]Lim S J, Kim B J, Jeong C M, et al. Anaerobic organic acidproductionoffoodwasteinonce-a-dayfeedinganddrawing-offbioreactor[J].BioresourceTechnology,2008,99:7866-7874.
    [22]MaspolimY,ZhouY,GuoCH,etal.TheeffectofpHonsolubilizationoforganicmatterandmicrobialcommunitystructures in sludge fermentation[J]. Bioresour Technol 2015,190:289-298.
    [23]Zhou M M, Yan B H, Wong J, et al. Enhanced volatile fattyacids production from anaerobic fermentation of food waste:A mini-review focusing on acidogenic metabolic pathways[J].Bioresource Technology, 2018, 248:68-78.
    [24]Hans-ChristianHoltenLutzh?ft,KanokwanBoe,ChengFang, et al. Comparison of VFA titration procedures used formonitoringthebiogasprocess[J]WaterResearch,2014,54:262-272.
    [25]于涛.养猪场废液厌氧发酵反应影响因素的研究[D].成都:西华大学,2008.YuTao.ResearchintoInfluenceFactorsofWaste-fluidofHoggeryinAnaerobicDecomposition[D].Chengdu:XihuaUniversity, 2008.(in Chinese with English abstract)
    [26]李磊,李忠佩,刘明,等.基于FTIR分析猪场废水有机物分解过程中组成结构变化[J].光谱学与光谱分析,2016,36(11):3517-3522.LiLei,LiZhongpei,LiuMing,etal.Structuralanalysisoforganic matter composition in piggery wastewater during theprocessoforganicdegradationbasedonFTIRspectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(11):3517-3522.(in Chinese with English abstract)
    [27]陈黎.猪粪资源化利用技术研究[D].杭州:浙江大学,2011.Chen Li. Study on the Reuse Technology of Pig Manure[D].Hangzhou:ZhejiangUniversity,2011.(inChinesewithEnglish abstract)
    [28]韩娅新,张成明,陈雪兰,等.不同农业有机废弃物产甲烷特性比较[J].农业工程学报,2016,32(1):258-264.HanYaxin,ZhangChengming,etal.Methaneproductionperformance comparison of different agricultural residues[J].TransactionsoftheChineseSocietyofAgriculturalEngineering(Transactions of the CSAE), 2016, 32(1):258-264.(in Chinese with English abstract)
    [29]徐杰.餐厨垃圾厌氧消化水解产酸及动力学研究[D].沈阳:沈阳航空航天大学,2014.XuJie.TheStudyofKineticsandHydrolysisandAcidogenisisinAnaerobicDigestionofKitchenWaste[D].Shenyang:ShenyangAerospaceUniversity,2014.(inChinese with English abstract)
    [30]HePJ,ChaiLN,LiL,etal.Insituvisualizationofthechangeinlignocellulosebiodegradabilityduringextendedanaerobicbacterialdegradation[J].RSCAdvances,2013,3:11759-11773.
    [31]白杰.城市污泥厌氧发酵产酸的数学模型研究[D].无锡:江南大学,2016.Bai Jie. The Mathematical Model of the Volatile Fatty AcidsProductionfromSewageSludgebyAnaerobicFermentation[D].Wuxi:JiangnanUniversity,2016.(inChinesewithEnglish abstract)
    [32]Ferreiro N, Soto M. Anaerobic hydrolysis of primary sludge:Influenceofsludgeconcentrationandtemperature[J].WaterScience and Technology, 2003, 47(12):239-246.
    [33]RademacherA,NolteC,SchonbergM,etal.Temperatureincreasesfrom55to75℃inatwo-phasebiogasreactorresultinfundamentalalterationswithinthebacterialandarchaeal community structure[J]. Applied Microbiology andBiotechnology, 2012, 96:565-576.
    [34]麻微微.沼气发酵复合菌系厌氧发酵特性及微生物群落结构分析[D].哈尔滨:哈尔滨工业大学,2015.MaWeiwei.Methane-producingCompositeStrainsAnaerobicDigestionandMicrobialCommunityStructureAnalysis[D].Harbin:HarbinInstituteofTechnology,2015.(in Chinese with English abstract)
    [35]Kim W, Hwang K, Shin S G, et al. Effect of high temperatureonbacterialcommunitydynamicsinanaerobicacidogenesisusingmesophilicsludgeinoculum[J].BioresourceTechnology, 2010, 101:817-822.
    [36]ChoHU,KimYM,ChoiYN,etal.Influenceoftemperatureonvolatilefattyacidproductionandmicrobialcommunitystructureduringanaerobicfermentationofmicroalgae[J].BioresourceTechnology,2015,191:475-480.
    [37]KriegNR,LudwigW,WhitmanW,etal.Bergey'sManualofSystematicBacteriology[M].Gerogia:UniversityofGeorgia, 2010.
    [38]王晋.厌氧发酵产酸微生物种群生态及互营关系研究[D].无锡:江南大学,2013.WangJin.ResearchofMicrobialCommunityEcologyandtheTrophicLinkduringAcidogenicFentation[D].Wuxi:Jiangnan University, 2013.(in Chinese with English abstract)
    [39]ShenL,HuH,JiH,etal.Productionofpoly(hydroxybutyrate-hydroxyvalerate)fromwasteorganicsbythetwo-stageprocess:Focusontheintermediatevolatilefattyacids[J].BioresourceTechnology,2014,166:194-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700