基于熵产理论的水轮机尾水管涡带研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Entropy production analysis for vortex rope of a turbine model
  • 作者:卢金 ; 王李科 ; 廖伟丽 ; 赵亚萍 ; 吉庆峰
  • 英文作者:LU Jinling;WANG Like;LIAO Weili;ZHAO Yaping;JI Qingfeng;Xi'an University of Technology;
  • 关键词:水泵水轮机 ; 熵产 ; 尾水管涡带 ; 压力脉动 ; 流场
  • 英文关键词:pump turbine;;entropy production;;vortex rope;;pressure fluctuation;;flow field
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:西安理工大学;
  • 出版日期:2019-02-27 10:35
  • 出版单位:水利学报
  • 年:2019
  • 期:v.50;No.509
  • 基金:国家自然科学基金面上项目(51679196,51879216)
  • 语种:中文;
  • 页:SLXB201902010
  • 页数:9
  • CN:02
  • ISSN:11-1882/TV
  • 分类号:81-89
摘要
为了研究水泵水轮机部分负荷工况尾水管涡带产生的原因和压力脉动特性,本文以模型水泵水轮机为研究对象,对内部流动进行了全流道三维数值模拟并采用熵产理论进行了分析。计算结果分析表明:数值模拟与实验值吻合较好;固定导叶和蜗壳内的总熵产很小,而转轮和尾水管内较大,在小流量工况叶片压力面产生的流动分离会导致高熵产率分布区域的出现,并且会随着流量的进一步减小而扩大;在部分负荷出现了粗壮型和纤细形两种涡带,均呈现螺旋形,涡带的形成与叶片出口环量偏离零环量有很大关系;涡带的出现会在尾水管内形成漩涡,阻塞尾水管通道,涡带跟随转轮同方向旋转,但是转速更低,因此尾水管出现幅值较大的低频压力脉动。
        In order to study the causes and pressure pulsation characteristics of the vortex rope under the partial load condition of the pump turbine,the model pump turbine was set as the research object in this paper. Both the steady and unsteady three-dimensional numerical simulation was carried out to simulate the internal flow,which was analyzed by the entropy production theory further. The results show that the numerical simulation is in good agreement with the experimental data. The entropy production in the scroll and stay vane is very small,while it is greater in the runner and draft. The flow separation produced on the pressure surface in the small discharge condition and it leads to the appearance of the high entropy production rate distribution area. And the area will expand as the discharge is further reduced. There are two kinds of vortex ropes with strong and fine shape at partial load,which are all spiral. The formation of the vortex rope has a great relationship with the circulation of the blade outlet n deviating from the zero. The appearance of the vortex rope will form a vortex in the draft tube,blocking the draft tube passage. The vortex rope will rotate in the same direction with the runner,but the rotation speed is lower,resulting in low frequency pressure pulsation with large amplitude in the draft tube.
引文
[1]何世恩,董新洲.大规模风电机组脱网原因分析及对策[J].电力系统保护与控制,2012,40(1):131-137.
    [2] HOUDE S,LLIESCU M S,FRASER R,et al. Experimental and numerical analysis of the cavitating part load vor?tex dynamics of low-head hydraulic turbines[C]//Proceedings of ASME Joint Fluids Engineering Conference. Shi?zuoka Japan,2011.
    [3] KIRSCHNER O,RUPECHT A,GODE E,et al. Experimental investigation of pressure fluctuations caused by a vortex rope in a draft tube[J]. IOP Conference Series:Earth and Environmental science,2012,15(6):1-8.
    [4] ZHANG R K,MAO F,WU J Z,et al. Characteristics and control of the draft-tube flow in part-load Francis tur?bine[J]. Journal of Fluids Engineering,2009,131(2):539-544.
    [5] LUO X W,YU A,JI B,et al. Unsteady vertical flow simulation in a Francis turbine with special emphasis on vor?tex rope behavior and pressure fluctuation alleviation[J]. Journal of Power and Energy,2017,231(3):215-226.
    [6]钱忠东,陆杰,郭志伟,等.水泵水轮机在水轮机工况下压力脉动特性研究[J].排灌机械工程学报,2016,34(8):672-678.
    [7] KAZUYOSHI M,KOJI T,JIRO Y,et al. Flow instability in an elbow draft tube for a Francis pump turbine[C]//Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems. Lausanne,Switzerland. 2002.
    [8] BEJAN A,KESTIN J. Entropy generation through heat and fluid flow[M]. New York:John Wiley&Sons Inc,1982.
    [9] SULLIVAN T. Novel aerodynamic loss analysis technique based on CFD predictions of entropy production[C]//Aerospace Atlantic Conference Dayton. Ohio. America,1995.
    [10] BEHZADMEHR A,MERCADIER Y. Numerical study of flow parameters and entropy generation on a centrifugal fan[J]. International Journal of Energy,2009,6(1):80-92.
    [11] BOHN D,KREWINKEL R,WOLFF A. Numerical analysis of heat transfer and flow stability in an open rotating cavity using the maximum entropy production principle[J]. Journal of Turbomachinery,2013,135(4):041023.
    [12] NAN X,LIU L,MA M,et al. Numerical investigation of entropy generation distribution in a transonic compressor[C]//ASME Turbo Expo:Turbomachinery Technical Conference&Exposition. Seoul,South Korea,2016.
    [13] LI D Y,WANG H J,QIN Y L,et al. Entropy production analysis of hysteresis characteristic of a pump-turbine model[J]. Energy Conversion and Management,2017,149:175-191.
    [14] GONG R Z,WANG H J,CHEN L X,et al. Application of entropy production theory to hydro-turbine hydraulic analysis[J]. Science China. Technological Sciences,2013,56(7):1636-1643.
    [15] HERWIG H,KOCK F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problem[J]. Heat and Mass Transfer,2007,43(3):207-215.
    [16]王李科,廖伟丽,卢金玲,等.基于弱可压缩的水泵水轮机S区压力脉动分析[J].水力发电学报,2017,36(6):69-78.
    [17] ZHAO X R,XIAO Y X,WANG Z W,et al. Numerical analysis of non-axisymmetric low characteristic for a pump turbine impeller at pump off-design conditon[J]. Renewable Energy,2018,115:1075-1085.
    [18] XIAO Y X,YAO Y Y,WANG Z W,et al. Hydrodynamic mechanism analysis of the pump hump district for a pump-turbine[J]. Engineering Computations,2016,33(3):957-976.
    [19] IEC60193,Hydraulic turbines storage pumps and pump turbines model acceptance tests[S]. International Ele?trotechnial Commission,1999.
    [20] BUREN T V,WHALEN E,AMITAY M. Eddies,stream and convergence zones in turbulent flows[J]. Physics of Fluids,2015,30(10):512-516.
    [21] TRISTAN F. Dynamics of the cavitation processing vortex rope for Francis turbines at part load operating condi?tions[D].école Polytechnique Fédérale de Lausanne,2016.
    [22] ANUP K C,LEE Y H,THAPA B. CFD study on prediction of vortex shedding in draft tube of Francis turbine and vortex control techniques[J]. Renewable Energy,2016,86:1406-1421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700