温度、盐度和光照对球形棕囊藻生长和卤代烃释放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Effect of Temperature,Salinity and Light Intensity on Growth and Methyl Halides Production of Phaeocystis globose
  • 作者:晏国佳 ; 丁琼瑶 ; 高先池
  • 英文作者:YAN Guo-Jia;DING Qiong-Yao;GAO Xian-Chi;College of Chemistry and Chemical Engineering,Ocean University of China;
  • 关键词:卤代 ; 球形棕囊藻 ; 温度 ; 盐度 ; 光照
  • 英文关键词:nethyl halide;;Phaeocystis globose;;temperature;;salinity;;light density
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学化学化工学院;
  • 出版日期:2018-12-11
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.291
  • 基金:山东省优秀中青年科学家科研奖励基金计划项目(BS2011HZ018)资助~~
  • 语种:中文;
  • 页:QDHY201902009
  • 页数:7
  • CN:02
  • ISSN:37-1414/P
  • 分类号:70-76
摘要
氯甲烷(CH_3Cl)、溴甲烷(CH_3Br)和碘甲烷(CH_3I)是挥发性卤代烃的3种主要成分,对温室效应和大气臭氧破坏有重要影响。由于海藻可以在一定条件下产生卤代烃,本文选择了球形棕囊藻进行室内培养,研究了不同温度、盐度和光照对其释放CH_3Cl、CH_3Br和CH_3I含量的影响。在不同温度(15、20、25℃),盐度(19、23、29)和光照(1425、38μmol·m~(-2)·s~(-1))条件下,藻细胞密度和卤甲烷的释放受温度的影响较明显。温度偏低(15~20℃)更适宜藻的生长和CH_3I的存在(CH_3I最大平均浓度为5.90~6.29pmol·L~(-1)),但25℃释放的CH_3Cl和CH_3Br最多(最大平均浓度分别为452.48和9.49pmol·L~(-1)),表明CH_3Cl的最大平均浓度比CH_3Br和CH_3I高约10倍。总体上CH_3Cl和CH_3Br的释放随着温度、盐度和光照强度的增加而增大,但盐度和光照的变化对藻的生长和卤甲烷释放的影响不明显。
        Methyl chloride(CH_3Cl),methyl bromide(CH_3Br)and methyl iodide(CH_3I)are major components of volatile halocarbons(VHCs),which play a significant role in greenhouse effect and atmospheric environment.Marine phytoplankton produce different amounts of CH_3Cl,CH_3Br and CH_3I under varied growth conditions.Emissions of all the methyl halides fromPhaeocystis globose were studied under different culture conditions.Specifically,the effects of temperature(15,20,25℃),salinity(19,23,29)and light intensity(14,25,38μmol·m~(-2)·s~(-1))were examined.Cell population and concentration of methyl halides had no obvious differences under various salinities and light intensities.However,lower temperatures(15~20℃)were more suitable for algal growth as well as the emission of CH_3I(The highest concentration were 5.90~6.29 pmol·L~(-1)).The highest concentration of CH_3Cl and CH_3Br were 452.48 and 9.49 pmol·L~(-1) respectively under 25 ℃.This indicated the highest concentration of CH_3Cl was 10 times higher than those of CH_3Br and CH_3I.In one word,the concentrations of CH_3Cl and CH_3Br were increased with temperature,salinity and light intensity,while the effects of salinity and light intensity on cell population and the concentration of methyl halides were not obvious.
引文
[1] He Z,Yang G,Lu X.Distributions and sea-to-air fluxes of volatile halocarbons in the East China Sea in early winter[J].Chemosphere,2013,90(2):747-757.
    [2] Tokarczyk R,Moore R M.Production of volatile organohalogens by phytoplankton cultures[J].Geophysical Research Letters,1994,21(4):285-288.
    [3] Lovelock J E,Maggs R J,Wade R J.Halogenated hydrocarbons in and over the Atlantic[J].Nature,1973,241(5386):194-196.
    [4] Hashimoto S,Toda S,Suzuki K,et al.Production and air-sea flux of halomethanes in the western subarctic Pacific in relation to phytoplankton pigment concentrations during the iron fertilization experiment(SEEDS II)[J].Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(26):2928-2935.
    [5] Yokouchi Y,Nojiri Y,Toom-Sauntry D,et al.Long-term variation of atmospheric methyl iodide and its link to global environmental change[J].Geophysical Research Letters,2012,39(23):L2805.
    [6] Moore R M,Wang L.The influence of iron fertilization on the fluxes of methyl halides and isoprene from ocean to atmosphere in the SERIES experiment[J].Deep Sea Research Part II:Topical Studies in Oceanography,2006,53(20-22):2398-2409.
    [7] Fuhlbrügge S,Quack B,Tegtmeier S,et al.The contribution of oceanic halocarbons to marine and free troposphere air over the tropical West Pacific[J].Atmospheric Chemistry&Physics,2015,15(13):17887-17943.
    [8]Manley S L,Dastoor M N.Methyl halide(CH3X)production from the giant kelp,Macrocystis,and estimates of global CH3X production by kelp1[J].Limnology and Oceanography,1987,32(3):709-715.
    [9] Manley S L,Dastoor M N.Methyl iodide(CH3I)production by kelp and associated microbes[J].Marine Biology,1988,98(4):477-482.
    [10] Manley S L,Goodwin K,North W J.Laboratory production of bromoform,methylene bromide,and methyl iodide by macroalgae and distribution in nearshore southern California waters[J].Limnology and Oceanography,1992,37(8):1652-1659.
    [11] Manley S L,Goodwin K,North W J.Laboratory production of bromoform,methylene bromide,and methyl iodide by macroalgae and distribution in nearshore southern California waters[J].Limnology and Oceanography,1992,37(8):1652-1659.
    [12] Sturges W T,Cota G F,Buckley P T.Bromoform emission from Arctic ice algae[J].Nature,1992,358(6388):660-662.
    [13]柳秋林,何真,杨桂朋.秋季渤海和北黄海海水中挥发性卤代烃的分布与通量[J].海洋环境科学,2015,34(4):481-487.Liu Q L,Zhen H E,Yang G P.Distributions and sea-to-Air fluxes of volatile halocarbons in the Bohai Sea and northern Yellow Sea[J].Marine Environmental Science,2015,34(4):481-487.
    [14] Dai R,Wang P,Jia P,et al.A review on factors affecting microcystins production by algae in aquatic environments[J].World Journal of Microbiology and Biotechnology,2016,32(3):51.
    [15] Abrahamsson K,Choo K,Pedersén M,et al.Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae[J].Phytochemistry,2003,64(3):725-734.
    [16] Snoeijs P J M,Prentice I C.Effects of cooling water discharge on the structure and dynamics of epilithic algal communities in the northern Baltic[J].Hydrobiologia,1989,184(1):99-123.
    [17] Snoeijs P J M.Ecology and taxonomy of Enteromorpha species in the vicinity of the Forsmark nuclear power plant(Bothnian Sea)[J].Acta Phytogeographica Suecica,1992,78:11-23.
    [18] Brown L M.Photosynthetic and growth responses to salinity in a marine isolate of Nannochloris bacillaris(Chlorophyceae)[J].Journal of Phycology,1982,18(18):483-488.
    [19] Sigaud,Siqueira,Aidar T C,et al.Salinity and temperature effects on the growth and chlorophyll-αcontent of some planktonic aigae[J].Boletim Do Instituto Oceanográfico,1993,41(1-2):95-103.
    [20] Rendall D A,Wilkinson M.Environmental tolerance of the estuarine diatom Melosira nummuloides(Dillw.)Ag[J].Journal of Experimental Marine Biology&Ecology,1986,102(s 2-3):133-151.
    [21]Manley S L,Dastoor M N.Methyl halide(CH3X)production from the giant kelp,Macrocystis,and estimates of global CH3X production by kelp[J].Limnology and Oceanography,1987,32(3):709-715.
    [22] Klick S.The release of volatile halocarbons to seawater by untreated and heavy metal exposed samples of the brown seaweed Fucus Vesiculosus[J].Marine Chemistry,1993,42(3-4):211-221.
    [23] Collén J,Ekdahl A,Abrahamsson K,et al.The involvement of hydrogen peroxide in the production of volatile halogenated compounds by Meristiella gelidium[J].Phytochemistry,1994,36(5):1197-1202.
    [24] Nightingale P D,Malin G,Liss P S.Production of chloroform and other low molecular-weight halocarbons by some species of macroalgae[J].Limnology&Oceanography,1995,40(4):680-689.
    [25] Wassmann P,Vernet M,Mitchell B G,et al.Mass sedimentation of Phaeocystis pouchetii in the Barents Sea[J].Marine Ecology Progress,1990,66(1-2):183-195.
    [26] Smith W O,Codispoti L A,Nelson D M,et al.Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle[J].Nature,1991,352(6335):514-516.
    [27] Ditullio G R,Grebmeier J M,Arrigo K R,et al.Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea,Antarctica[J].Nature,2000,404(6778):595-598.
    [28] Vogt M,O’Brien C,Peloquin J,et al.Global marine plankton functional type biomass distributions:Phaeocystis spp.[J].Earth System Science Data Discussions,2012,5(1):405-443.
    [29] Scarratt M G,Moore R M.Production of methyl bromide and methyl chloride in laboratory cultures of marine phytoplankton II[J].Marine Chemistry,1998,59(3-4):311-320.
    [30] Guillard R R L.Culture of Phytoplankton for Feeding Marine Invertebrates[M].Boston MA:Springer,1975:29-60.
    [31] Smythe-Wright D,Peckett C,Boswell S,et al.Controls on the production of organohalogens by phytoplankton:Effect of nitrate concentration and grazing[J].Journal of Geophysical Research,2010,115(G3).
    [32] Yang G P,Lu X,Song G S,et al.Purge-and-trap gas chromatography method for analysis of methyl chloride and methyl bromide in seawater[J].Chinese Journal of Analytical Chemistry,2010,38(5):719-722.
    [33]丁琼瑶.中国东海、黄海碘甲烷的浓度分布与海-气通量及藻类释放研究[D].青岛:中国海洋大学,2015.Ding Q Y.The Distributions and Sea-to-Air Fluxes of Methyl Iodide and Production by Marine Phytoplankton[D].Qingdao:Ocean University of China,2015.
    [34] Scarratt M G,Moore R M.Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton[J].Marine Chemistry,1996,54(3-4):263-272.
    [35] Fabregas J,Herrero C.Growth and biochemical variability of the marine microalgaChlorella stigmatophorain batch cultures with different salinities and nutrient gradient concentration[J].British Phycological Journal,1987,22(3):269-276.
    [36] Konopka A,Brock T D.Effect of temperature on blue-green algae(cyanobacteria)in lake mendota[J].Applied&Environmental Microbiology,1978,36(4):572-576.
    [37] Tsuruta A,Ohgai M,Ueno S,et al.The effect of the chlorinity on the growth of planktonic diatomSkeletonema costatum(Greville)Cleve in vitro[J].Nihon-Suisan-Gakkai-Shi,1985,51(11):1883-1886..
    [38] Tait V K,Moore R M.Methyl chloride(CH3Cl)production in phytoplankton cultures[J].Limnology and Oceanography,1995,40(1):189-195.
    [39] Zafiriou O C.Reaction of methyl halides with seawater and marine aerosols[J].Journal of Marine Research,1975,33(1):75-81.
    [40] Goodwin K D,North W J,Lidstrom M E.Production of bromoform and dibromomethane by giant kelp:Factors affecting release and comparison to anthropogenic bromine sources[J].Limnology&Oceanography,1997,42(8):1725-1734.
    [41] Neidleman S L,Geigert J.Biohalogenation:Principles,Basic roles,and Applications[M].E.Horwood:Halsted Press,1986.
    [42] Theiler R,Cook J C,Hager L P,et al.Halohydrocarbon synthesis by bromoperoxidase[J].Science,1978,202(4372):1094-1096.
    [43] Butler A,Walker J V.Marine haloperoxidases[J].Chemical Reviews,1993,93(5):1937-1944.
    [44] Eppley R W.Temperature and phytoplankton growth in the sea[J].Fishery Bulletin,1972,70(4):1063-1085.
    [45] Medlin L K,Lange M,Baumann M E M.Genetic differentiation among three colony-forming species of Phaeocystis:Further evidence for the phylogeny of the Prymnesiophyta[J].International Journal of Hematology,1994,33(3):199-212.
    [46] Moore R M.A photochemical source of methyl chloride in saline waters[J].Environmental Science&Technology,2008,42(6):1933-1937.
    [47] Raven J A,Geider R J.Temperature and algal growth[J].New Phytologist,1988,110(4):441-461.
    [48] Manley S L,de la Cuesta J L.Methyl iodide production from marine phytoplankton cultures[J].Limnology and Oceanography,1997,42(1):142-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700