淡紫拟青霉A10的促生特性及其发酵液对印度芥菜幼苗蓄积Cs~+的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plant growth-promoting characteristics of A10(Paecilomyces lilacinus)and effects of its fermentation broth on Cs~+ accumulation in Brassica juncea L. seedlings
  • 作者:韩娜 ; 陶宗娅 ; 代文秀 ; 黄攀 ; 刘巧 ; 赖金龙 ; 吴国 ; 卢红
  • 英文作者:HAN Na;TAO Zong-ya;DAI Wen-xiu;HUANG Pan;LIU Qiao;LAI Jin-long;WU Guo;LU Hong;Life Science College, Sichuan Normal University;
  • 关键词:淡紫拟青霉A10 ; ; 印度芥菜幼苗 ; 植物-微生物互作
  • 英文关键词:Paecilomyces lilacinus;;cesium;;indian mustard(Brassica juncea L.)seedling;;plant–microbial interaction
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:四川师范大学生命科学学院;
  • 出版日期:2019-03-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.283
  • 基金:四川师范大学重点培育项目(16ZP09);四川师范大学实验技术课题(SYJS2016-08);; 地方高校国家级大学生创新创业训练计划项目(201710636014)~~
  • 语种:中文;
  • 页:NHBH201903002
  • 页数:9
  • CN:03
  • ISSN:12-1347/S
  • 分类号:7-15
摘要
从种植印度芥菜的盆栽土壤(ρ[Cs~+]为10 mmol·kg-1)中筛选出淡紫拟青霉(A10),通过测试分析A10溶磷、解钾、分泌植物生长素(IAA)类似物及其发酵液对印度芥菜幼苗蓄积Cs~+的影响,研究A10的植物促生特性及其发酵液在印度芥菜蓄积Cs~+过程中的作用,为植物-微生物互作在Cs~+污染环境修复中的应用及其互作机制研究提供实验依据。结果显示:A10对Cs~+的耐受性和富集能力强,ρ(Cs~+)为50~100 mg·L~(-1)时A10的溶磷能力被显著抑制(P<0.05);Cs~+处理及外源色氨酸均可显著诱导A10分泌IAA类似物;用1/2 Hoagland营养液稀释A10发酵液后再配制ρ(Cs~+)为25~100 mg·L~(-1)的处理液,用其培养印度芥菜,ρ(Cs~+)为0 mg·L~(-1)(CK)时A10发酵液对印度芥菜幼苗根的生长呈现"低促高抑"的生长素效应,稀释35倍时的促根效果最佳;A10发酵液稀释5、35倍和55倍条件下,ρ(Cs~+)为100 mg·L~(-1)时幼苗地上部Cs~+蓄积量均显著升高,其中稀释35倍时Cs~+蓄积量达最大值,地上部为8.86 mg·g-1DW,地下部为16.76 mg·g-1DW,印度芥菜幼苗蓄积Cs~+与其吸收K+呈显著的负相关性。研究表明,淡紫拟青霉A10具有显著的植物促生特性,A10发酵液有利于提高印度芥菜幼苗对外源Cs~+的蓄积。
        In the present study, a strain of the fungus Paecilomyces lilacinus, named A10, was isolated from potted soil with a cesium(Cs~+)content(ρ[Cs~+])of 10 mmol·kg-1. A10 was studied in order to investigate its plant growth-promoting characteristics and the effects of A10 fermentation broth on Cs~+bioaccumulation in Indian mustard(Brassica juncea L.)seedlings, by measuring the secretion of auxin(IAA)analogs, the content of soluble phosphorus, the effective potassium in media with different Cs~+concentrations, and the Cs~+content in seedlings.The following results were obtained. A10 had strong tolerance and Cs~+-enrichment traits, although the phosphorus solubilization ability of A10 was significantly inhibited when the ρ[Cs~+] in the medium was 50~100 mg·L~(-1)(P<0.05). Treatments in which either Cs~+or exogenous tryptophan was added to the medium could significantly increase the secretion of IAA analogs induced by A10. A10 fermentation broth was diluted(dilution ratio 5 x, 35 x, 55 x)with 1/2-strength Hoagland nutrient solution, formulated to yield solutions containing ρ(Cs~+) 25~100 mg·L~(-1), and then used as culture solutions to cultivate Brassica juncea seedlings. At ρ(Cs~+)0 mg·L~(-1)(CK), the dilute solution of A10 fermentation broth clearly affected root growth, and the secretion of IAA initially increased and subsequently decreased. Optimal root-promoting effects were observed in seedlings treated with the 35 x dilutions of fermentation broth. When seedling were cultured in 5 x, 35 x, and 55 x diluted broth containing ρ(Cs~+)100 mg·L~(-1), the amounts of Cs~+bioaccumulated increased significantly in the aboveground parts of seedlings, with maximum values of 8.86 mg·g-1 DW in the aboveground parts and 16.76 mg·g-1 DW in the belowground parts being recorded in seedlings cultured in the 35 x diluted broth. Furthermore, we detected a significant negative correlation between the accumulated Cs~+and K+content in the aboveground parts of seedlings. Collectively, these results indicate that A10 has distinct plant growth-promoting properties,whereas treatments with A10 fermentation broth can promote Cs~+bioaccumulation in Indian mustard seedlings.
引文
[1] Noor M J, Ashraf M A. Accumulation and tolerance of radiocesium in plants and its impact on the environment[J]. Environment&Ecosystem Science, 2017(1):13-16.
    [2]刘红娟,唐泉,单健,等.环境中放射性铯的迁移进展研究[J].环境科学与管理, 2014, 39(12):50-54.LIU Hong-juan, TANG Quan, SHAN Jian, et al. Migration of radiocesium in environment[J]. Environmental Science and Management, 2014,39(12):50-54.
    [3]王丹,陈晓明,唐运来,等.放射性核素污染土壤的植物提取修复技术研究关键问题探讨[J].辐射防护, 2016, 36(2):94-103.WANG Dan, CHEN Xiao-ming, TANG Yun-lai, et al. Discussion on key issues to research the phytoextraction technology of containmination of radionuclides in soil[J]. Radiation Protection, 2016, 36(2):94-103.
    [4]邱亮,丰俊东.微生物对放射性核素吸附行为的研究进展[J].环境工程, 2015, 33(6):30-34.QIU Liang, FENG Jun-dong. Research progress on biosorption of radionuclides[J]. Environmental Engineering, 2015, 33(6):30-34.
    [5]李芳,刘波,黄素芳.淡紫拟青霉研究概况与展望[J].昆虫天敌, 2004, 26(3):132-139.LI Fang, LIU Bo, HUANG Su-fang. Research and application of Paecilomyces lilacinus(Thom.)Samson[J]. Natural Enemies of Insects, 2004,26(3):132-139.
    [6]苏德纯,黄焕忠.印度芥菜对土壤中难溶态Cd的吸收及活化[J].中国环境科学, 2002, 22(4):342-345.SU De-chun, HUANG Huan-zhong. The absorption and activation of insoluble Cd in soil by Indian mustard(Brassica juncea)[J]. China Environmental Science, 2002, 22(4):342-345.
    [7] Begonia G B, Davis C D, Begonia M F T, et al. Growth responses of Indian mustard[Brassica juncea,(L.)Czern.] and its phytoextraction of lead from a contaminated soil[J]. Bulletin of Environmental Contamination&Toxicology, 1998, 61(1):38-43.
    [8]付倩,赖金龙,尹燚,等.铯对印度芥菜幼苗生长的影响及其亚细胞分布和化学形态[J].西北植物学报, 2015, 35(11):2235-2242.FU Qian, LAI Jin-long, YIN Yi, et al. Effect of cesium on seedling growth, its subcellular distribution and chemical forms in Brassica juncea L.[J]. Acta Botanica Boreali-occidentalia Sinica, 2015, 35(11):2235-2242.
    [9]赖金龙,杨垒滟,付倩,等. Sr2+在印度芥菜幼苗中的富集、亚细胞分布及贮存形态研究[J].农业环境科学学报, 2015, 34(11):2055-2062.LAI Jin-long, YANG Lei-yan, FU Qian, et al. Bioaccumulation, subcellular distribution and chemical forms of strontium in Brassica juncea L.[J]. Journal of Agro-Environment Science, 2015, 34(11):2055-2062.
    [10]林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010.LIN Xian-gui. Principles and methods of soil microbiology research[M]. Beijing:Higher Education Press, 2010.
    [11]沈萍,陈向东.微生物学实验[M]. 3版.北京:高等教育出版社,1999.SHEN Ping, CHEN Xiang-dong. Microbiology experiment[M]. 3th.Beijing:Higher Education Press, 1999.
    [12]汤绍虎,罗充.植物生理学实验教程[M].重庆:西南师范大学出版社, 2012.TANG Shao-hu, LUO Chong. The experimental guide for plant physiology[M]. Chongqing:Southwestern Normal University Press, 2012.
    [13] Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 619(2):793-796.
    [14]班宜辉.铅锌矿区深色有隔内生真菌提高植物耐Pb机制研究[D].杨凌:西北农林科技大学, 2013.BAN Yi-hui. Mechanisms of dark septate endophyte isolated from Pb-Zn mine improving plant lead tolerance[D]. Yangling:Northwest A&F University, 2013.
    [15]王建龙,陈灿.微生物还原放射性核素研究进展[J].核技术,2006, 29(4):286-290.WANG Jian-long,CHEN Can. Advances in microbial reduction of radionuclides[J]. Nuclear Techniques, 2006, 29(4):286-290.
    [16]王建龙.微生物与铯的相互作用及其在放射性核素污染环境修复中的应用潜力[J].核技术, 2003, 26(12):949-955.WANG Jian-long. Interaction of microorganism with caesium and its potential application in bioremediation of radionuclide contamination[J]. Nuclear Techniques, 2003, 26(12):949-955.
    [17]陈灿,王建龙.酿酒酵母对放射性核素铯的生物吸附[J].原子能科学技术, 2008, 42(4):308-313.CHEN Can, WANG Jian-long. Biosorption of cesium by Saccharomyces cerevisia[J]. Atomic Energy Science and Technology, 2008, 42(4):308-313.
    [18]杨会玲.丛枝菌根真菌对宿根高粱修复铯污染的调节效应[D].绵阳:西南科技大学, 2015.YANG Hui-ling. Regulation effects of arbuscular mycorrhizal fungi(AMF)on phytoremediation of Sorghum haipense in cesium contamination soils[D]. Mianyang:Southwest University, 2015.
    [19]王卫宪.真菌曲霉F77对水中铯的吸附行为研究[D].兰州:兰州大学, 2014.WANG Wei-xian. Biosorption of cesium ions in aqueous solution by Aspergillus F77[D]. Lanzhou:Lanzhou University, 2014.
    [20]王建龙.耐辐射基因工程菌Deinococcus radiodurans及其在环境修复中的应用[J].辐射研究与辐射工艺学报, 2004, 22(5):257-260.WANG Jian-long. Engineered radiation-resistant bacteria and their application in bioremediation of radioactive wastes-contaminated environment[J]. J Radiat Res Radiat Process, 2004, 22(5):257-260.
    [21]李小龙.淡紫拟青霉518的抗菌活性及其次生代谢产物研究[D].南京:南京农业大学, 2012.LI Xiao-long. Study on the secondary metabolites from Paecilomyces lilacinus 518[D]. Nanjing:Nanjing Agricultural University, 2012.
    [22]李芳,黄素芳,刘波.淡紫拟青霉对辛硫磷的降解效应[J].应用与环境生物学报, 2006, 12(1):104-107.LI Fang, HUANG Su-fang, LIU Bo. Degradation of phoxmi by Paecilomyces lilaciuns[J]. Chinese Journal of Applied&Environmental Biology, 2006, 12(1):104-107.
    [23]李芳.淡紫拟青霉菌(Paecilomyces lilacinus(Thom.)Samson Str.NH-PL-03)生物学特性与次生代谢物质生物效应研究[D].福州:福建农林大学, 2005.LI Fang. Study on biological characteristics of Paecilomyces lilacinus(Thom.)Samson Str. NH-PL-03 and its biological effects of secondary metabolites[D]. Fuzhou:Fujian Agricultural and Forest University, 2005.
    [24] Voinove-Raikov a Z, Bakaliv anov D, Chanova D, et al. Bet aindoleacetic acid in some soil microorganisms[J]. Pochvozn Agrokhim, 1969,4:85-90.
    [25] Leverone L A, Kossenjans W, Jayasimihulu K, et al. Evidence of zeinbound indoleacetic acid using gas chromatography-selected ion monitoring-mass spectrometry analysis and immunogold labeling[J]. Plant Physiology, 1991, 96(4):1070-1075.
    [26]杨婷,廖美德,贺玉广,等.淡紫拟青霉PL-HN-16促进植物生长活性因子的初步研究[J].华北农学报, 2015, 30(6):170-175.YANG Ting, LIAO Mei-de, HE Yu-guang, et al. Preliminary study on the factor of promoting plant growth from Paecilomyces lilacinus PL-HN-16[J]. Agricultural Boreali-Sinica, 2015, 30(6):170-175.
    [27]林茂松,沈纪冬,文玲,等.淡紫拟青霉代谢产物生物测定和生理活性物质分析[J].江苏农业学报, 1999, 15(4):226-228.LIN Mao-song, SHEN Ji-dong, WEN Ling, et al. Bioassay of metabolic products of Pacilomyces lilacinus and analysis of its physiologically active substance[J]. Jiangsu Agricultural Sciences, 1999, 15(4):226-228.
    [28]胡拥军. 3-吲哚乙酸在植物超富集砷中的作用和机理[D].昆明:昆明理工大学, 2014.HU Yong-jun. The roles and mechanisms of 3-indole acetic acid in arsenic huperaccumulation by plants[D]. Kunming:Kunming University of Science and Technology, 2014.
    [29]叶和松.生物表面活性剂产生菌株的筛选及提高植物吸收土壤铅镉效应的研究[D].南京:南京农业大学, 2006.YE He-song. Screening of biosurfactant-producing bacterial strains and their effects on the uptake of lead and cadmium in soils by plants[D]. Nanjing:Nanjing Agricultural University, 2006.
    [30]张婷.植物激素协同螯合剂强化植物修复土壤重金属污染[D].厦门:集美大学, 2012.ZHANG Ting. Enhanced phytoremediation of heavy metal polluted soil by phytohormone in combination with chelating agents[D]. Xiamen:Jimei University, 2012.
    [31] Peyronel B. Mycorhizes parl′observation directe[C]//Proceedings of the Seventh, Stockholm:International Botanical Congress, 1950:436–438.
    [32] Jefferies P, Gianinazzi S, Perotto S, et al. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility[J]. Biology and Fertility of Soils, 2003, 37(1):1–16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700