深水泡沫套管静水压载特性与压力控制机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrostatic pressure characteristics and pressure control mechanism of foam casing in deepwater wells
  • 作者:胡志强 ; 杨进 ; 路保平 ; 侯绪田 ; 黄小龙 ; 巩立根 ; 李文龙 ; 李舒展
  • 英文作者:Hu Zhiqiang;Yang Jin;Lu Baoping;Hou Xutian;Huang Xiaolong;Gong Ligen;Li Wenlong;Li Shuzhan;Institute of Ocean Engineering,China University of Petroleum;Sinopec Research Institute of Petroleum Engineering;Shenzhen Branch of CNOOC EnerTech-Drilling & Production Company;
  • 关键词:深水油气井 ; 环空压力 ; 可压缩泡沫 ; 环空体积 ; 泡沫套管 ; 启动压力
  • 英文关键词:deepwater wells;;annular pressure buildup;;crushable syntactic foam;;annular volume;;foam casing;;crush pressure
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:中国石油大学(北京)海洋工程研究院;中国石油化工股份有限公司石油工程技术研究院;中海油能源发展股份有限公司工程技术深圳分公司;
  • 出版日期:2019-06-15
  • 出版单位:石油学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目“海洋深水浅层钻井关键技术基础理论研究”(No.51434009);国家自然科学基金项目“深水油气井导管全寿命周期承载力演化机理研究”(No.51774301);国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(No.51821092);; 国家科技重大专项“海外重点油气田开发钻采关键技术”(2017ZX05032-004-003)资助
  • 语种:中文;
  • 页:SYXB201906008
  • 页数:8
  • CN:06
  • ISSN:11-2128/TE
  • 分类号:96-103
摘要
深水油气井生产测试阶段受地层高温流体的影响,会产生套管环空圈闭压力上升现象,严重威胁油气井管柱服役周期和井筒完整性。采用泡沫套管技术能有效减缓环空压力上升,保护管柱结构不受损坏,是一项经济可行的控压措施。首先通过实验测试得到了不同温度和不同微珠质量含量下的复合泡沫材料体积压缩率随静水压力的变化规律,并根据Gibson模型中的多孔材料力学行为理论,分析了泡沫套管控压过程中线弹性变形、屈服破坏和致密化压缩3个阶段的力学行为特征。同时根据弹性力学和热应力理论,结合多层圆筒受热变形原理,遵照体积相容性原则推导出密闭环空内压力增量、体积增量与温度变化之间的函数关系。针对泡沫材料体积压缩量进行分段计算处理,利用实验数据线性回归得到泡沫材料线弹性阶段和致密化阶段的压缩系数,建立了涵盖热膨胀效应和致密化效应的泡沫体积压缩计算模型。结果表明:泡沫材料的启动压力会随着温度的升高而降低,空心玻璃微珠含量越高,泡沫材料体积压缩率越大;深水井多层套管环空内压力增量、体积增量与温度变化呈线性关系,环空体积增量越大,环空压力增量越小;泡沫材料在致密化压缩阶段比线弹性压缩阶段更能有效地控制环空压力上涨幅度,计算时不可忽略;当环空压力增量达到泡沫套管启动压力时,环空内压力大幅降低,套管体积变化量减小。
        The production test phase of deepwater oil and gas wells is affected by high temperature fluids in the formation,leading to a rise of casing annular trapped pressure,severely threatening the casing service cycle and well integrity.The foam casing technology is an economically pressure management technology able to slow down the annulus pressure buildup and protect casing structure from damage.In this study,the change laws of volumetric compressive rate of crushable syntactic foam materials with hydrostatic pressure under different temperatures and hallow glass microsphere mass fractions are obtained through experiments;According to the theory of the porous material mechanics behavior of Gibson model,the mechanic behavior characteristics are analyzed in three stages of foam casing pressure control process,i.e.,linear elastic deformation,yield damage and densification.Meanwhile,based on the elastic mechanics and thermal stress theory in combination with the principle of heat deformation of multi-layer cylinder and volume compatibility theory,this paper deduces the function relationship between the annular pressure and volume increment and temperature change.In addition,piecewise calculation is conducted on the volume compression of foam material.The compressive rates of the linear elastic stage and densification stage of foam material are acquired through the linear regression of experimental data,so as to create a calculation model of foam volume compression covering both thermal expansion and densification effect.The results have indicated that the initialized pressure of foam material will decrease with the rise of temperature,and the higher the mass content of hollow glass microspheres is,the greater the volume compression ratio of foam material will be.The annular pressure and volume increments present a liner relation with temperature changes in multi-layer casing of deep water well,and the greater the annular pressure increment is,the smaller the annular volume increment will be.The densification stage is more effective than the linear elastic stage of foam material to release annular pressure increment,which should not be ignored in calculation;when the annular pressure increment reaches the initialized pressure of foam casing,the annular pressure will be greatly reduced and the casing volume variation will be decreased.
引文
[1]BRADFORD D W,FRITCHIE D G JR,GIBSON D H,et al.Marlin failure analysis and redesign:Part 1-description of failure[J].SPE Drilling&Completion,2004,19(2):104-111.
    [2]HU Zhiqiang,YANG Jin,LIU Shujie,et al.Prediction of sealed annular pressure between dual packers in HPHT deepwater wells[J].Arabian Journal of Geosciences,2018,11:489.
    [3]朱红钧,唐有波,李珍明,等.气井A环空压力恢复与泄压实验[J].石油学报,2016,37(9):1171-1178.ZHU Hongjun,TANG Youbo,LI Zhenming,et al.Experiment on pressure recovery and relief in the A annulus space of gas well[J].Acta Petrolei Sinica,2016,37(9):1171-1178.
    [4]胡志强,杨进,李中,等.高温高压井双封隔器管柱安全评估[J].石油钻采工艺,2017,39(3):288-292.HU Zhiqiang,YANG Jin,LI Zhong,et al.Safety assessment on twin-packer string of HTHP well[J].Oil Drilling&Production Technology,2017,39(3):288-292.
    [5]DONG Guangjian,CHEN Ping.A review of the evaluation methods and control technologies for trapped annular pressure in deepwater oil and gas wells[J].Journal of Natural Gas Science and Engineering,2016,37:85-105.
    [6]胡伟杰,王建龙,张卫东.深水钻井密闭环空圈闭压力预测及释放技术[J].中外能源,2012,17(8):41-45.HU Weijie,WANG Jianlong,ZHANG Weidong.Confined annular trap pressure prediction and release technology for deep water drilling[J].Sino-Global Energy,2012,17(8):41-45.
    [7]熊爱江,杨进,宋宇,等.油气井用破裂盘测试与破裂压力模型研究[J].石油钻采工艺,2017,34(8):1-6.XIONG Aijiang,YANG Jin,SONG Yu,et al.Research on model of fracture pressure on test of oil and gas burst disc[J].Pressure Vessel Technology,2017,34(8):1-6.
    [8]胡志强,杨进,黄小龙,等.深水井套管环空泄压装置的研制与应用[J].石油钻探技术,2018,46(3):72-77.HU Zhiqiang,YANG Jin,HUANG Xiaolong,et al.Development and application of a casing annulus pressure relief device for better wellbore integrity in deepwater wells[J].Petroleum Drilling Techniques,2018,46(3):72-77.
    [9]于晓聪,杨进,阚长宾,等.深水井筒环空圈闭压力单向控制机理[J].石油学报,2018,39(3):335-340.YU Xiaocong,YANG Jin,KAN Changbin,et al.Unidirectional control mechanism of annulus trapped pressure in deepwater shaft[J].Acta Petrolei Sinica,2018,39(3):335-340.
    [10]周波,杨进,刘正礼,等.深水油气井筒环空注氮控压机理[J].石油勘探与开发,2015,42(3):386-389.ZHOU Bo,YANG Jin,LIU Zhengli,et al.Mechanism of pressure management by injecting nitrogen in casing annulus of deepwater wells[J].Petroleum Exploration and Development,2015,42(3):386-389.
    [11]HU Zhiqiang,YANG Jin,LI Wenlong,et al.Research and development of compressible foam for pressure management in casing annulus of deepwater wells[J].Journal of Petroleum Science and Engineering,2018,166:546-560.
    [12]GUAN Zhichuan,ZHANG Bo,WANG Qing,et al.Design of thermal-insulated pipes applied in deepwater well to mitigate annular pressure build-up[J].Applied Thermal Engineering,2016,98:129-136.
    [13]蒋敏,檀朝东,李隽,等.储气库井油套环空注保护液和氮气柱对比[J].石油学报,2017,38(10):1210-1216.JIANG Min,TAN Chaodong,LI Jun,et al.Comparisons between protection fluid and nitrogen column in tube-casing annulus of gas storage wells[J].Acta Petrolei Sinica,2017,38(10):1210-1216.
    [14]ADAMS A.How to design for annulus fluid heat-up[R].SPE22871,1991.
    [15]杨进,唐海雄,刘正礼,等.深水油气井套管环空压力预测模型[J].石油勘探与开发,2013,40(5):616-619.YANG Jin,TANG Haixiong,LIU Zhengli,et al.Prediction model of casing annulus pressure for deepwater well drilling and completion operation[J].Petroleum Exploration and Development,2013,40(5):616-619.
    [16]张波,管志川,张琦,等.高压气井环空压力预测与控制措施[J].石油勘探与开发,2015,42(4):518-522.ZHANG Bo,GUAN Zhichuan,ZHANG Qi,et al.Prediction of sustained annular pressure and the pressure control measures for high pressure gas wells[J].Petroleum Exploration and Development,2015,42(4):616-619.
    [17]EZELL R,FONTENOT E S,ROBINSON E F,et al.High performance aqueous insulating packer fluid improved flow assurance and reduced annular pressure buildup in ultra deepwater wells[R].SPE135177,2010.
    [18]KANG Y F,GONZALES A,LIU Z C,et al.Modeling and simulation of annular pressure buildup APB in a deepwater wellbore with vacuum-insulated tubing[R].SPE184618,2017.
    [19]ZHANG B,GUAN Z X,HASAN A R,et al.Development and design of new casing to mitigate trapped annular pressure caused by thermal expansion in oil and gas wells[J].Applied Thermal Engineering,2017,118:292-298.
    [20]卢子兴,严寒冰,王建华.聚氨酯复合泡沫塑料的准静态压缩力学性能[J].中国塑料,2004,(2):33-36.LU Zixing,YAN Hanbing,WANG Jianhua.Mechanical properties of polyurethane syntactic foams under quasi-static compression[J].China Plastics,2004,(2):33-36.
    [21]邹林池.空心球/Al微孔材料的压缩变形行为和吸能性能研究[D].哈尔滨:哈尔滨工业大学,2013.ZOU Linchi.Compressive deformation behavior and energy absorption property of cenosphere/Al syntactic foams[D].Harbin:Harbin Institute of Technology,2013.
    [22]韩守红,吕振华,刘永进.硬质聚氨酯泡沫力学特性的静水压力加载实验方法研究[J].实验力学,2010,25(1):55-60.HAN Shouhong,LZhenhua,LIU Yongjin.A study of experimental method for mechanical properties of rigid polyurethane foam under hydrostatic compressive loading[J].Journal of Experimental Mechanics,2010,25(1):55-60.
    [23]高宝奎.高温引起的套管附加载荷实用计算模型[J].石油钻采工艺,2002,24(1):8-10.GAO Baokui.Practical model for calculating the additional load on casing by high temperature[J].Drilling&Production Technology,2002,24(1):8-10.
    [24]李鹏,刘德安,杨学忠.微球复合泡沫材料的研究和应用[J].玻璃钢/复合材料,2000(4):21-24.LI Peng,LIU Dean,YANG Xuezhong.Research and application of syntactic foam[J].Fiber Reinforced Plastics/Composites,2000(4):21-24.
    [25]GIBSON L J,ASHBY M F.多孔固体结构与性能[M].刘培生,译.北京:清华大学出版社,2003.GIBSON L J,ASHBY M F.Cellular solids:structure and properties[M].LIU Peisheng,trans.Beijing:Tsinghua University Press,2003.
    [26]ZHANG Zhi,WANG Han.Sealed annulus thermal expansion pressure mechanical calculation method and application among multiple packers in HPHT gas wells[J].Journal of Natural Gas Science and Engineering,2016,31:692-702.
    [27]李维特,黄保海.热应力理论分析及应用[M].北京:中国电力出版社,2004.LI Weite,HUANG Baohai.The theory of thermal stress analysis and application[M].Beijing:China Electric Power Press,2004.
    [28]HASAN R,IZGEC B,KABIR S.Sustaining production by managing annular-pressure buildup[J].SPE Operation&Production,2010,25(2):195-203.
    [29]张波,管志川,张琦.深水油气井开采过程环空压力预测与分析[J].石油学报,2015,36(8):1012-1017.ZHANG Bo,GUAN Zhichuan,ZHANG Qi.Prediction and analysis on annular pressure of deepwater well in the production stage[J].Acta Petrolei Sinica,2015,36(8):1012-1017.
    [30]胡志强,杨进,刘书杰,等.基于套管-水泥环-地层热固耦合作用的多层套管环空附加压力预测模型[J].工程热物理学报,2018,39(8):1824-1832.HU Zhiqiang,YANG Jin,LIU Shujie,et al.Prediction model of multilayer casing annular pressure buildup based on casing-cement sheath-formation with thermo-structural coupling effects[J].Journal of Engineering Thermophysics,2018,39(8):1824-1832.
    [31]API.Management of sustained casing pressure on offshore wells:APIRP90[S].Washington:American Petroleum Institute,2006.
    [32]张崇,黄亮,任冠龙,等.海上高温高压井完井管柱安全性设计[J].科学技术与工程,2016,16(12):248-253.ZHANG Chong,HUANG Liang,REN Guanlong,et al.Safety design of well completion string in offshore HTHP well[J].Science Technology and Engineering,2016,16(12):248-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700