斜拉索表层断丝缺陷漏磁检测圆环阵列传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Circular sensor array for surface flaws detection in stay cable based on magnetic flux leakage
  • 作者:杨宁祥 ; 刘秀成 ; 陈英红 ; 肖君武
  • 英文作者:Yang Ningxiang;Liu Xiucheng;Chen Yinghong;Xiao Junwu;Zhuhai Branch,Guangdong Institute of Special Equipment Inspection and Research;College of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology;
  • 关键词:斜拉索 ; 缺陷检测 ; 漏磁场分析 ; 磁偶极子模型 ; 圆环阵列传感器
  • 英文关键词:stay cable;;flaws detection;;magnetic flux leakage analysis;;magnetic dipole model;;circular sensor array
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:广东省特种设备检测研究院珠海检测院;北京工业大学机械工程与应用电子技术学院;
  • 出版日期:2019-04-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:广东省质量技术监督局科技项目(2017CT05)资助
  • 语种:中文;
  • 页:YQXB201904015
  • 页数:6
  • CN:04
  • ISSN:11-2179/TH
  • 分类号:126-131
摘要
针对直径95 mm的斜拉索,建立了三维磁偶极子模型,计算分析了断丝缺陷圆截面的均布磁荷在三维空间形成的漏磁场,重点讨论了单根断丝形成的轴向漏磁场分量在空间的分布规律。构建了轴向漏磁场分量扫查系统,实验验证了模型对单根断丝漏磁场计算结果的准确性。采用-6 d B阈值法确定了轴向漏磁场分量在圆周方向的有效扩散角度约为±6°,以此确定了圆环阵列漏磁传感器的最低阵元数量为30。研制了适用于斜拉索表层断丝缺陷检测的圆环阵列传感器,在提离距离为8 mm的条件下实现了斜拉索表层多处断丝缺陷的扫查成像与定位,并对比分析了阵元数量对成像质量的影响。为研制大直径斜拉索表层缺陷漏磁检测圆环阵列传感器提供了方法借鉴。
        Three-dimensional magnetic dipole model is formulated for the stay cable with 95 mm diameter. The magnetic flux leakage field induced by the broken-wire flaw in the 3 D space is analyzed. The spatial distribution of the axial component of the leakage field is highlighted and discussed. Scanning system is constructed to measure the axial component of the leakage field. Experimental results verify the accuracy of the magnetic dipole model on leakage field detection. Threshold method is applied to estimate the effective diffusion angle of the axial component of the leakage field along circumferential direction as ± 6°,which determines that the minimum number of elements in the sensor array is 30. A circular magnetic flux leakage sensor array is developed for the stay cable. With the lift-off of 8 mm,the sensor array can successfully detect multiple surface broken-wire flaws by providing a scanning image to the cable. The effectiveness of the element number in the array on the quality of the scanning image is discussed. This study provides a reference for designing circular magnetic flux leakage sensor array for surface flaws detection in large-diameter stay cable.
引文
[1]杨理践,耿浩,高松巍.基于多级磁化的高速漏磁检测技术研究[J].仪器仪表学报,2018,39(6):148-156.YANG L J,GENG H,GAO S W. Study on high-speed magnetic flux leakage testing technology based on multistage magnetization[J]. Chinese Journal of Scientific Instrument,2018,39(6):148-156.
    [2]张兰勇,陈辉煌,刘胜,等.在线压缩感知方法及其在漏磁检测中的应用[J].仪器仪表学报,2017,38(7):1597-1605.ZHANG L Y,CHEN H H,LIU SH,et al. On-line compressed sensing method and its application in magnetic flux leakage detection[J]. Chinese Journal of Scientific Instrument,2017,38(7):1597-1605.
    [3] WU B,WANG Y J,LIU X C,et al. A novel TMRbased MFL sensor for steel wire rope inspection using the orthogonal test method[J]. Smart Materials and Structures,2015,24(7):075007.
    [4] LIU X C,WANG Y J,WU B,et al. Design of tunnel magnetoresistive-based circular MFL sensor array for the detection of flaws in steel wire rope[J]. Journal of Sensors,2016:6198065.
    [5] GAO Y,TIAN G Y,LI K, et al. Multiple cracks detection and visualization using magnetic flux leakage and eddy current pulsed thermography[J]. Sensors and Actuators A:Physical,2015(234):269-281.
    [6] CHEN J,HUANG S,ZHAO W. Three-dimensional defect inversion from magnetic flux leakage signals using iterative neural network[J]. IET Science,Measurement&Technology,2015,9(4):418-426.
    [7] KIM J W,LEE C,PARK S,et al. Magnetic flux leakage-based steel cable NDE and damage visualization on a cable climbing robot[C]. International Society for Optical Engineering,SPIE,2012.
    [8] XU J,WU X,CHENG C,et al. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables[J]. Sensors,2012,12(1):518-533.
    [9] XU F,WANG X,WANG L. Cable inspection robot for cable-stayed bridges:Design, analysis, and application[J]. Journal of Field Robotics,2011,28(3):441-459.
    [10] LIU X C,XIAO J W,WU B,et al. A novel sensor to measure the biased pulse magnetic response in steel stay cable for the detection of surface and internal flaws[J].Sensors and Actuators A:Physical, 2018(269):218-226.
    [11] PRIEWALD R H,MAGELE C,LEDGER P D,et al.Fast magnetic flux leakage signal inversion for the reconstruction of arbitrary defect profiles in steel using finite elements[J]. IEEE Transactions on Magnetics,2013,49(1):506-516.
    [12] WANG Y,LIU X,WU B,et al. Dipole modeling of stress-dependent magnetic flux leakage[J]. NDT&E International,2018(95):1-8.
    [13]吴振宁,汪力行,刘金海.基于空间映射的匀速采样漏磁检测复杂缺陷重构方法[J].仪器仪表学报,2018,39(7):164-172.WU ZH Y,WANG L X,LIU J H. Space mapping based reconstruction of complex defects of MFL inspection under constant sampling speed[J]. Chinese Journal of Scientific Instrument,2018,39(7):164-172.
    [14]吴德会,刘志天,王晓红,等.表面缺陷的方向性对漏磁场分布的影响[J].物理学报,2017,66(4):48102-048102.WU D H,LIU ZH T,WANG X H,et al. Mechanism analysis of influence of surface-breaking orientation on magnetic leakage field distribution[J]. Acta Physica Sinica,2017,66(4):48102-048102.
    [15] JIANG X L,XIA Y F. A LMF based broken strand faults detection scheme for steel core in ACSR[C].International Conference on High Voltage Engineering and Application,IEEE,2010:661-664.
    [16] MANDACHE C,CLAPHAM L. A model for magnetic flux leakage signal predictions[J]. Journal of Physics D:Applied Physics,2003,36(20):2427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700