压电振动能量收集器在穿戴设备上的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of piezoelectric vibration energy harvester in wearable devices
  • 作者:高珊 ; 敖宏瑞
  • 英文作者:GAO Shan;AO Hong-rui;School of Mechatronics Engineering, Harbin Institute of Technology;
  • 关键词:能量收集技术 ; 可穿戴设备 ; 振动能量 ; 压电材料
  • 英文关键词:energy harvesting technology;;wearables equipment;;vibration energy;;piezoelectric material
  • 中文刊名:JXSJ
  • 英文刊名:Journal of Machine Design
  • 机构:哈尔滨工业大学机电工程学院;
  • 出版日期:2018-08-31
  • 出版单位:机械设计
  • 年:2018
  • 期:v.35
  • 语种:中文;
  • 页:JXSJ2018S1002
  • 页数:5
  • CN:S1
  • ISSN:12-1120/TH
  • 分类号:11-15
摘要
随着近年来微机电系统、集成电路和无线通信技术的不断发展,压电振动能量收集技术已被广泛应用于不同规模的微机电系统中,尤其是与人类生活息息相关的穿戴设备表现出了对微能源技术的迫切需求。文中综述了压电能量收集的基本原理和常用结构,分析了可穿戴设备压电能量采集的主要研究成果和进展,讨论了基于可穿戴设备压电能量采集器面临的挑战和提出的解决方案。
        With the continuous development of micro-electro-mechanical system, integrated circuit and wireless communication technology in recent years, piezoelectric vibration energy harvesting technology has been widely used in the power supply system of different scale electro-mechanical equipment. In particular, it is closely related to the human life wearable devices which shows the urgent demand of micro energy technology. In this paper, the basic principle and common structure of piezoelectric energy harvesting are reviewed. The main research achievements and progress of piezoelectric energy harvesting for wearable devices are analyzed, and the challenges and proposed solutions for the piezoelectric energy harvesters based on wearable devices are discussed.
引文
[1] Gilbert J M,Balouchi F. Comparison of energy harvesting systems for wireless sensor networks[J]. Int J Autom,2008,5(4):334-347.
    [2] Lara D,Labrador M A. A Survey on human activity recognition using[J]. Wearable Sensors. IEEE Communications Surveys&Tutorials,2013, 15(3):1192-1209.
    [3] China Market Research Onlne. 2017—2023 China intelligent wearable device market analysis and development trend research report[R].549593.
    [4] Pan Y W. Research on the wearable hybrid environmental energy harvesting technology[D]. Zhenjiang::Jiangsu University, 2017.
    [5] Liu Chenglong, Meng Aihua, Chen Wenyi, et al. Research and development of vibration energy harvesting technology[J]. Equipment Manufacturing Technology, 2013(12):43-47.
    [6] Liu X, Chen R. Current situation and developing trend of piezoelectric vibration energy harvesters[J]. Journal of Vibration and Shock,2012, 31(16):169-176.
    [7] Tang Gang, Liu Jingquan, Ma Huaan, et al. A survey on research of micro piezoelectric vibration energy harvesters[J]. Machine Design and Research, 2010, 26(4):61-64,70.
    [8] Yan Jinyu. Piezoelectric effect and its application in materials[J].Digital Technology and Application, 2011(1):100-101.
    [9] ANSI/IEEE Std 176—1987[S].
    [10] Properties of the BM532 lead zirconate titanate. http://www.sensortech.ca/site/index.cfm? DSP=Page&ID=125[DB/OL].
    [11] Properties of PMN-32PT single crystal. http://www.channeltechgroup.com/publication/view/pmn-32pt-001/[DB/OL].
    [12] Gururaja T R,Schulze W A. Piezoelectric composite materials for ultrasonic transducer applications, part I:resonant modes of vibration of pzt rod-polymer composites[J].IEEE Trans. Sonics Ultrason, 1985,32(4):481-498.
    [13] Brown L F. Ferroelectric polymers current and future ultrasound applications[J].IEEE Ultrasonics Symposium Proceedings,1992,32(1-2):539-550.
    [14] Smith W A. New opportunities in ultrasonic transducers emergingfrom innovations in piezoelectric materials[J].Proc SPIE 1733,1992,3:26.
    [15] Li H D,Tian C,Deng Z. Energy harvesting from low frequency applications using piezoelectric materials[J]. Applied Physics Reviews1,2014:041301.
    [16] Roundy S,Wright P K, A piezoelectric vibration based generator for wireless electronics[J]. Smart Mater Struct, 2004, 13(5);1131-1142.
    [17] Kymissis J,Kendall C,Paradiso J, et al. Parasitic power harvesting in shoes[J].Wearable Computers, 1998,12:132-139.
    [18] Deng L,Wen Z,Zhao X, et al. High voltage output MEMS vibration energy harvester in d31mode with PZT thin film[J]. Journal of Microelectro-mechanical Systems, 2014, 23(4):855-861.
    [19] Toprak A,Tigli O. Piezoelectric energy harvesting state-of-the-art and challenges[J]. Applied Physics Reviews,2014(1):1-3.
    [20] Li Q,Shepertycky M,Martin J P. Lower-limb driven energy harvesting backpack:Design, performance and energetics[C]//2015 34t h Chinese Control Conference(CCC), 2015:7821-7826.
    [21] Rudge Patel. Battery free automatic pacemaker[J]. Global Science,2015(5):18-18.
    [22] Pasquale G De,Kim S G. Gold finger:wireless human-machine interface with dedicated software and biomechanical energy harvesting system[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):565-575.
    [23] Mohajer N,Abdi H,Nahavandi S. Human energy harvesting adapted for portable electronics applications[C]//2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference(APPEEC), 2015:1-6.
    [24] Cui Nuanyang. Harvesting the weak mechanical energy by the piezoelectric generator and triboelectric generator[D].Lanzhou:Dissertation of Lanzhou University, 2015.
    [25] Yang B,Yun K S. Efficient energy harvesting from human motion using wearable piezoelectric shell structures[C]//2011 16th International Solid-State Sensors, Actuators and Microsystems Conference,2011:2646-2649.
    [26] Jia Chen, Chen Hong, Liu Ming. Implanted intra-articular piezoelectric ceramics for energy research[J]. Piezoelectricity and Acoustooptic, 2008, 30(1):96-99.
    [27] Potkay J A, Brooks K. An arterial cuff energy scavenger for implanted microsystems[C]//2nd International Conference on Bioinformatics and Biomedical Engineering, 2008:1580-1583.
    [28] Almouahed S,Gouriou M,Hamitouche C, et al. The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(5):799-807.
    [29] Gu L, Livermore C. Passive self-tuning energy harvester for extracting energy from rotational motion[J]. Appl Phys Lett 97,2010,97(8):081904.
    [30] Gu L, Livermore C. Compact passively self-tuning energy harvesting for rotating applications[J]. Smart Mater Struct, 2012,21(1):015002.
    [31] Liu J Q,Fang H B,Xu Z Y, et al, A MEMS-based piezoelectric power generator array for vibration energy harvesting[J]. Microelec-tron J,2008,39(5):802-806.
    [32] Dayou J,Liew W Y H,Chow M S. Increasing the bandwidth of the width-split piezoelectric energy harv ester[J]. Microelectron J, 2012,43(7):484-491.
    [33] Marinkovic B,Koser H. Smart sand—a wide bandwidth vibration energy harvesting platform[J]. Appl Phys Lett,2009,94(10):103505.
    [34] Lee B,Lin S,Wu W, et al. Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film[J]. Micromech Microeng,2009, 19(6):065014.
    [35] Uchino K. Introduction to piezoelectric actuators and transducers[M]. Center,2003:ADA429659.
    [36] Ohigashi H,Koga K. Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor[J].Jpn J Appl Phys,1982, 21(8):L455-L457.
    [37] Kanno T, Chida I,Adachi K, et al, Power-generation performance of lead-free(K, Na)NbO3piezoelectric thin-film energy harvesters[J]. Sens Actuators,2012, A 179:132-136.
    [38] Jackson N,Keeney L,Mathewson A. Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications[J].Smart Mater Struct,2013,22(11):115033.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700