木材湿热软化压缩技术及其机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Development of Wood Compression Technology and Its Mechanism under Hydro-Thermal Condition
  • 作者:黄荣凤 ; 高志强 ; 吕建雄
  • 英文作者:Huang Rongfeng;Gao Zhiqiang;Lü Jianxiong;Key Laboratory of Wood Science and Technology of State Forestry Administration Research Institute of Wood Industry,CAF;
  • 关键词:湿热软化 ; 整体压缩 ; 层状压缩 ; 传热传质 ; 屈服应力
  • 英文关键词:hydro-thermal softening;;overall compression;;sandwich compression;;heat and mass transfer;;yield stress
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:中国林业科学研究院木材工业研究所国家林业局木材科学与技术重点实验室;
  • 出版日期:2018-01-15
  • 出版单位:林业科学
  • 年:2018
  • 期:v.54
  • 基金:林业公益性行业科研专项“实木家具用低质材提质加工技术研究与示范”(201404501);; 国家自然科学基金项目“水热控制下木材层状压缩形成机制及其可控性”(31670557)
  • 语种:中文;
  • 页:LYKE201801017
  • 页数:8
  • CN:01
  • ISSN:11-1908/S
  • 分类号:157-164
摘要
木材压缩是提高软质木材密度、强度和硬度,改善木材物理力学性能,扩大木材应用范围的有效方法。本文针对湿热软化下的木材压缩问题,从木材软化机制、软化特性、软化点的确定、热板加热下的传热传质特性、层状压缩的形成和压缩变形固定等方面分析木材压缩技术的研究现状、进展以及存在的问题。木材细胞壁的成分和组织构造是影响木材软化和压缩变形的主要内在因素,而湿和热则是影响木材压缩变形的外在因素。木材是一种具有弹塑性的天然高聚物。干燥木材缺乏塑性,水分和热量都能对木材组分起到增塑作用,特别是在湿热共同作用下增塑作用更加显著。木材细胞壁主要成分纤维素、半纤维素和木质素的特性及所占比例直接影响木材的可塑性,其中木质素的含量和软化特性是木材软化的主要影响因素。玻璃化转变温度和应力屈服点是表征木材软化最常用的参数。在木材弹塑性分析中,应力屈服点控制了木材在塑性区域的应力-应变关系,同时也决定了塑性变形潜能,但由于木材成分和结构非常复杂,应力-应变关系的拐点并不明显,因此应力屈服点和屈服应力的确定是木材塑性变形表征的关键点,也是一个难点。木材的组织构造主要影响木材的传热传质过程。利用木材3个断面渗透性的显著差异,通过干燥、浸水、放置、热板加热等处理,可使木材内部各个层面上形成差异显著的含水率梯度分布和屈服应力差,压缩后形成层状压缩木材。层状压缩木材压缩层的密度可达0.8 g·cm-3以上,未压缩层仍然保持原有的密度,而且压缩层的形成部位是可控的。层状压缩技术可以解决整体压缩木材损失大的问题,但目前木材压缩变形机制的研究都是围绕木材整体压缩开展的,缺乏木材软化点和屈服应力随含水率变化规律以及热板加热下木材内部屈服应力差变化规律的基础研究。要实现层状压缩的可控性,还需要在热板加热下的传热传质规律及木材湿热梯度分布的形成与调控等方面开展深入研究。
        Wood compression is an effective method of enhancing the plantation fast-growing wood density,strength and hardness and improving its physical and mechanical properties,which broadens its application fields. In this paper,wood compression research status,development and problems were analyzed from the aspects of wood softening mechanism and characteristics,softening point,heat and mass transfer characteristics under hot plate heating,formation of sandwich compression and fixation of compression deformation. Composition and organizational structure of wood cellular wall is the main internal factors and hydro-thermal condition is external factors affecting wood softening and compression deformation.Wood is a natural macromolecular composite and an elastic-plastic material. Dry wood with low plasticity is plasticized by moisture and heat,especially the combined action of them was more significant. As the main components of wood cellular wall,cellulose,hemicellulose and lignin characteristics and their proportions directly impact on wood plasticity,especially the lignin. The glass transition temperature and stress yield point are the most common parameters to represent wood softening. In the elastoplastic analysis of wood,the stress yield point is used for determining the plastic potential which dominates the stress-strain relationships of material in the plastic region. However,due to the complexity of wood composition and structure,the change point of stress-strain is not obvious,so the stress yield point and the yield stress isthe key and difficulty point to determine the wood plastic deformation characterization. Organizational structure of wood mainly affects its heat and mass transfer. Because of the permeability differences among wood three sections,significant moisture distribution gradient and yield stress difference can be formed by conducting the treatments of drying,soaking,setting and hot plate heating. Then sandwich compressed wood can be obtained by hot press. Density of compressed layer reached above 0. 8 g·cm-3,and the density of uncompressed layer still maintained. However,the compressed layer can be formed on the surface layer or any part of the interior. Sandwich compression can reduce volumetric loss of wood during compression. By now,the deformation mechanism study of wood compression mainly focus on the overall compression,lacking of fundamental investigation on softening point and yield stress change with moisture content variation and yield stress difference under hot plate heating. To achieve the controllability of sandwich compression,heat and mass transfer under hot plate heating status and hydro-thermal gradient distribution need to further research.
引文
城代進,鮫島一彦.1996.化学.大津:海青社.(Joda S,Sameshima K.1996.Wood science series 4-Chemistry.Japan,Otsu,Kaiseisha-Press.[in Chinese])
    高橋徹,中山義雄.1995.物理.大津:海青社.(Takahashi T,Nakayama Y.1995.Wood science series 3-Physics.Japan,Otsu,Kaiseisha-Press.[in Chinese])
    李坚,吴玉章,马岩,等.2011.功能性木材.北京:科学出版社.(Li J,Wu Y Z,Ma Y,et al.2011.Functional wood.Beijing:Science Press.[in Chinese])
    李坚.2014.木材科学.3版.北京:科学出版社.(Li J.2014.Wood science.Edition 3.Beijing:Science Press.[in Chinese])
    李坚.2009.木材科学研究.北京:科学出版社.(Li J.2009.The research of wood science.Beijing:Science Press.[in Chinese])
    李梁,李贤军,张璧光.2009.非稳态法测定马尾松扩散系数.干燥技术与设备,7(1):79-83.(Li L,Li X J,Zhang B G.2009.Determination of moisture diffusion coefficient of Pinus massoniana with non-steady state methods.Drying Technology&Equipment,7(1):79-83.[in Chinese])
    李贤军,蔡智勇,傅峰.2010.干燥过程中木材内部含水率检测的X射线扫描方法.林业科学,46(2):122-127.(Li X J,Cai Z Y,Fu F.2010.A new X-ray scanning method for measuring the internal moisture content in wood drying.Scientia Silvae Sinicae,46(2):122-127.[in Chinese])
    李延军,李梁,张璧光.2007.非稳态法测定杉木板材的水分扩散系数.浙江林学院学报,24(2):121-124.(Li Y J,Li L,Zhang B G.2007.Moisture diffusion coefficient of Cunninghamia lanceolata board with non-steady state conditions.Journal of Zhejiang Forestry College,24(2):121-124.[in Chinese])
    刘君良,江泽慧,许忠允,等.2002.人工林软质木材表面密实化新技术.木材工业,16(1):20-22.(Liu J L,Jiang Z H,Xu Z Y,et al.2002.New technology on surface compression of plantation softwood.China Wood Industry,16(1):20-22.[in Chinese])
    刘一星,赵广杰.2012.木质资源材料学.2版.北京:中国林业出版社.(Liu Y X,Zhao G J.2012.Wood resource materials science.Edition2.Beijing:China Forestry Publishing House.[in Chinese])
    涂登云,杜超,周桥芳,等.2012.表层压缩技术在杨木实木地板生产中的应用.木材工业,27(4):46-48.(Tu D Y,Du C,Zhou Q F,et al.2012.Poplar wood flooring surface densification.China Wood Industry,27(4):46-48.[in Chinese])
    汪佑宏,顾炼百,王传贵,等.2005.马尾松锯材在热压干燥过程中的传热规律.南京林业大学学报:自然科学版,29(4):33-36.(Wang Y H,Gu L B,Wang C G,et al.2005.Regularity of heat transfer during press drying of Pinus massoniana lumber.Journal of Nanjing Forestry University:Natural Science Edition,29(4):33-36.[in Chinese])
    汪佑宏,顾炼百,刘启明,等.2008.马尾松锯材在热压干燥过程中的传质数学模型.南京林业大学学报:自然科学版,32(2):71-75.(Wang Y H,Gu L B,Liu Q M,et al.2008.Mathematical models of moisture transfer during press drying of Pinus massoniana lumber.Journal of Nanjing Forestry University:Natural Science Edition,32(2):71-75.[in Chinese])
    王艳伟,黄荣凤,张耀明.2012.水热控制下杨木的表层压缩密实化及其固定技术.木材工业,26(2):18-21.(Wang Y W,Huang R F,Zhang Y M.2012.Surface densification and heat fixation of Chinese white poplar by hydro-thermal control.China Wood Industry,26(2):18-21.[in Chinese])
    夏捷,黄荣凤,吕建雄,等.2013.水热预处理对毛白杨木材压缩层形成的影响.木材工业,27(4):42-45.(Xia J,Huang R F,LüJ X,et al.Effect of hydro-thermal pretreatment on compression layer formation during densification of Chinese white poplar.China Wood Industry,27(4):42-45.[in Chinese])
    俞昌铭.2011.多孔材料传热传质及其数值分析.北京:清华大学出版社.(Yu C M.2011.Numerical analysis of heat and mass transfer for porous materials.Beijing:Tsinghua University Press.[in Chinese])
    足立幸司,井上雅文.2006.木材の横圧縮加工技術.木材工業,61(11):510-512.(Adachi K,Inoue M.2006.The technique of wood grain compression.Wood Industry,61(11):510-512.[in Chinese])
    Adachi K,Inoue M,Kawai S.2005.Deformation behavior of wood by roller pressing.Mokuzai Gakkaishi,51(4):234-242.
    Bramhall G.1979.Mathematical model for lumber drying:1-principles involved.Wood Science,12(1):14-21.
    Chui Y H,Tabarsa T.2007.Stress-strain response of wood under radial compression partⅢ.Prediction using cellular theory.Journal of the Institute of Wood Science,17(6):333-342.
    Crank J.1956.Mathematics of diffusion.Clarendon Oxford,Oxford.
    Dwianto W,Morooka T,Norimoto M.1998.The compressive stress relationship of Albizia(Paraserienthes falcata Becker)wood during heat treatment.Mokuzai Gakkaishi,44(6):403-409.
    Dwianto W,Morooka T,Norimoto M.2000.Compressive creep of wood under high temperature steam.Holzforschung,54:104-108.
    Furuta Y,Nakajima M,Nakanii E,et al.2010.The effects of lignin and hemicelluloses on themal-softing properties of water-swollen wood.Mokuzai Gakkaishi,56(3):132-138.
    Gao Z Q,Huang R F,Lu J X,et al.2016.Sandwich compression of wood:control of creating density gradient on lumber thickness and properties of compressed wood.Wood Science Technology,50(4):833-844.
    Goring D A I.1963.Thermal soft of lignin,hemicellulose and cellulose.Pulp and Paper Magazine of Canada,64(12):517-527.
    Higashihara T,Morooka T,Hirosawa S,et al.2000.Permanent fixation of transversely compressed wood by steaming and its mechanism.Mokuzai Gakkaishi,46(4):291-297.
    Higashihara T,Morooka T,Tanaka F,et al.2003.Permanent fixation of cellulose fiber by steaming and its mechanism.Mokuzai Gakkaishi,49(4):260-266.
    Higashihara T,Morooka T,Hirosawa S,et al.2004.Relationship between changes in chemical components and permanent fixation of compressed wood by steaming or heating.Mokuzai Gakkaishi,50(3):159-167.
    Huang R F,Wang Y W,Zhao Y K,et al.2012.Sandwich compression of wood by hygro-thermal control.Mokuzai Gakkaishi,58(2):84-89.
    Inoue M,Norimoto M,Otsuka Y,et al.1990.Surface compression of coniferous wood lumberⅠ.A new technique to compress the surface layer.Mokuzai Gakkaishi,36(11):969-975.
    Inoue M,Norimoto M,Otsuka Y,et al.1991.Surface compression of coniferous wood lumberⅢ.Permanent set of the surface compressed layer by a water solution of low molecular weight phenolic resin.Mokuzai Gakkaishi,37(3):234-240.
    Inoue M,Norimoto M,Tanahashi M,et al.1993.Steam or heat fixation of compressed wood.Wood and Fiber Science,25(3):224-235.
    Inoue M,Kodama J,Yamamoto Y,et al.1998.Dimensional stabilization of compressed wood using high-frequency heating.Mokuzai Gakkaishi,44(6):410-416.
    Inoue M,Hamaguchi T,Morooka T,et al.2000.Fixation of compressive deformation of wood by wet heating under atmospheric pressure.Mokuzai Gakkaishi,46(4):298-304.
    Inoue M,Morooka T,Rowell R M,et al.2008.Mechanism of partial fixation of compressed wood based on a matrix non-softening methods.Wood Material Science and Engineering,3(3/4):126-130.
    Kitamori A,Jung K,Mori T,et al.2010.Mechanical properties of compressed wood in accordance with the compression ratio.Mokuzai Gakkaisi,56(2):67-78.
    Kollmann F P,Kuenzi E W,Stamm A J.1975.Principles of wood science and technology,Vol.Ⅱ:wood based materials.Springer,Heidelberg.
    Liu Y X,Norimoto M,Morooka T.1993.The large compressive deformation of wood in the transverse directionⅠ.Relationships between stress-strain diagram and specific gravities of wood.Mokuzai Gakkaishi,39(10):1140-1145.
    Matsumoto A,Oda H,Arima T,et al.2012.Effect of hot-pressing on surface drying-set in Sugi columns with pith.Mokuzai Gakkaishi,58(1):23-33.
    Morisato K,Hattori A,Ishimaru Y,et al.1999.Adsorption of liquids and swelling of woodⅤ:Swelling dependence on the adsorption.Mokuzai Gakkaishi,45(6):448-454.
    Norimoto M.1993.Large compressive deformation in wood.Mokuzai Gakkaishi,39(8):867-874.
    Olesheimer L J.1929.Compressed laminated fibrous product and process of making the same.US Patent No.1707135.
    Raghava R,Caddell R M,Gregorys Y Y.1973.The macroscopic yield behaviour of polymers.Journal of Materials Science,8:225-232.
    Reilly D T,Burstein A H.1975.The elastic and ultimate properties of compact bone tissue.Biomechanics,8:193-405.
    Schmidt J.1967.Press drying of beech wood.Forest Products Journal,17(9):107-113.
    Tabarsa T,Chui Y H.2000.Stress-strain response of wood under radial compression partⅠ.Test method and influences of cellular properties.Wood and fiber science,32(2):144-152.
    Tabarsa T,Chui Y H.2001.Stress-strain response of wood under radial compression partⅡ.Effect of species and loading direction.Wood and Fiber Science,33(2):223-232.
    Takamura N.1968.Studies on hot pressing and drying process in the production of fiberboardⅢ.Softening of fiber components in hot pressing of fiber mat.Mokuzai Gakkaishi,14(2):75-79.
    Tang Y F,Pearson R G,Hart C A,et al.1994.A numerical model for heat transfer and moisture evaporation processes in hot-press dryingan integral approach.Wood and Fiber Science,26(1):78-90.
    Tokuda M,Uchisako T,Suzuki N.2003.Feasibility of surface hardness Sugi board by heated roll-press for flooring board.Wood Industry,58(3):112-118.
    Tsunematsu S,Yoshihara H.2006.Influence of the compression radio on the Properties of compressed wood.Wood Industry,61(4):146-152.
    Udaka E,Furuno T.1998.Heat compression of Sugi(Cryptomeria japonica).Mokuzai Gakkaishi,44(3):218-222.
    Udaka E,Furuno T,Inoue M.2000.Relationship between the set recovery of compressive deformation and the moisture in wood specimens using a closed heating system.Mokuzai Gakkaishi,46(2):144-148.
    Udaka E,Furuno T.2003.Change of crystalline structure of compressed wood by treatment with a closed heating system.Mokuzai Gakkaishi,49(1):1-6.
    Udaka E,Furuno T.2005.Relationships between pressure in a closed space and set recovery of compressive deformation of wood using a closed heating system.Mokuzai Gakkaishi,51(3):153-158.
    Walsh F L,Watts R L.1923.Composit lumber.U S Patent No.1465383.
    Yoshihara H,Ohta M.1994.Stress-strain relationship of wood in the plastic regionⅡ.Formulation of the equivalent stress-equivalent plastic strain relationship.Mokuzai Gakkaishi,40(3):263-267.
    Yoshihara H,Ohta M.1997.Stress-strain relationship of wood in the plastic regionⅢ.Determination of the yield stress by of formulating the stress-plastic strain relationship.Mokuzai Gakkaishi,43(6):464-469
    Yokoyama M,Kanayama K,Furuta Y,et al.2000.Mechanical and dielectric relaxations of wood in a low temperature rangeⅢ:Application of sech law to dielectric properties due to adsorbed water.Mokuzai Gakkaishi,46(3):173-180.
    Yoshihara H,Kurose Y.2008.Load-deflection behavior of compressed sitka spruce.Wood Industry,63(5):214-217.
    Zhao Y K,Wang Z H,Iida I,et al.2015.Studies on pre-treatment by compression for wood drying I:Effects of compression ratio,compression direction and compression speed on the reduction of moisture content in wood.Journal of Wood Science,61(1):113-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700