木材横纹压缩应力-应变关系及其影响因素研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Development of Influencing Factors of Stress-Strain Relationship under Wood Transverse Compression
  • 作者:伍艳梅 ; 黄荣凤 ; 高志强 ; 王艳伟 ; 李任
  • 英文作者:WU Yan-mei;HUANG Rong-feng;GAO Zhi-qiang;WANG Yan-wei;LI Ren;Research Institute of Wood Industry, Chinese Academy of Forestry;Key Laboratory of Wood Science and Technology of State Forestry Administration;Jiusheng Flooring Corporation;
  • 关键词:横纹压缩 ; 应力-应变关系 ; 层状压缩 ; 屈服点 ; 屈服应力
  • 英文关键词:Transverse compression;;Stress-strain relationship;;Sandwich compression;;Yield point;;Yield stress
  • 中文刊名:LCGY
  • 英文刊名:China Forest Products Industry
  • 机构:中国林业科学研究院木材工业研究所;Jiusheng Flooring Corporation;
  • 出版日期:2018-11-06
  • 出版单位:林产工业
  • 年:2018
  • 期:v.45;No.279
  • 基金:国家自然科学基金资助项目(31670557)
  • 语种:中文;
  • 页:LCGY201811004
  • 页数:6
  • CN:11
  • ISSN:11-1874/S
  • 分类号:14-19
摘要
木材横向压缩下应力-应变关系对压缩材料热压工艺的设计和最终产品的物理力学性能有着重要的影响。从木材横纹压缩应力-应变关系和屈服点的确定入手,重点阐述从微观到宏观角度的木材自身组织构造特性,以及压缩工艺参数中温度、含水率等因素对木材横纹压缩应力-应变关系的影响,并对今后木材横纹压缩技术研究方向提出了建议。目前木材横纹压缩变形机制的研究多是围绕木材整体压缩开展,缺乏木材应力-应变关系随木材自身特性及含水率、温度交互作用变化规律的系统研究,以及湿热状态下层状压缩木材内部屈服应力差形成机制的研究。要实现层状压缩木材压缩层位置和厚度的可控性,需要在准确确定木材屈服点和掌握木材应力-应变关系的湿热响应规律的前提下,科学构建适用于湿热条件下木材层状压缩应力-应变关系模型。
        The stress-strain relationship of wood under transverse compression has an important influence on the design of the hot pressing process and the physical and mechanical properties of the final product. In this paper, the effects of wood properties on the transverse compressive stress-strain relationship were analyzed from the microscopic scale to the macroscopic scale, as well as the effects of temperature and moisture. Suggestions and opinions on the research direction of wood transverse compression technology in the future were pointed out. At present, the study of the compression mechanism of wood is carried out around the overall compression of wood,lacking of the systematic research of wood softening and yield stress change with moisture content and temperature variation, and the law of yield stress difference response to wood anisotropy. In order to acquire the controllability of the sandwich compression, it is necessary to control the hydro-thermal response of the wood softening and plastic deformation, and scientifically construct stress-strain model which is suitable for sandwich compression under the hydro-thermal condition.
引文
[1]Chui Y H,Tabarsa T.Stress-Strain Response of Wood Under Radial Compression.Part 3-Prediction Using Cellular Theory[J].Journal of the Institute of Wood Science,2008,17(6):333-342.
    [2]Tabarsa T,Chui Y H.Effect of heat and compression on properties of white spruce[J].Forest Products Journal,1997,47(5):85-88.
    [3]Huang R F,Wang Y W,Zhao Y K,et al.Sandwich compression of wood by hygrothermal control[J].Mokuzai Gakkaishi,2012,58(2):84-89.
    [4]Gao Z Q,Huang R F,Lu J X,et al.Sandwich compression of wood:control of creating density gradient on lumber thickness and properties of compressed wood[J].Wood Science and Technology,2016,50(4):833-844.
    [5]Tabarsa T,Chui Y H.Stress-strain response of wood under radial compression partⅠ.Test method and influences of cellular properties[J].Wood and Fiber Science,2000,32(2):144-152.
    [6]Guo J,Song K L,Salmén L,et al.Changes of wood cell walls in response to hygro-mechnical steam treatment[J].Carbohydr.Polym,2015,115:207-214.
    [7]Nairn J A.Numerical simulations of transverse compression and densification in wood[J].Wood and fiber science:Journal of the Society of Wood Science and Technology,2006,38(4):122-139.
    [8]Widehammar S.Stress-strain relationships for spruce wood:Influence of strain rate,moisture content and loading direction[J].Experimental Mechanics.2004,44(1):44-48.
    [9]Yoshihara H,Ohta M.Stress-strain relationship of wood in the plastic regionⅢ.Determination of the yield stress by of formulating the stressplastic strain relationship[J].Mokuzai Gakkaishi,1997,43(6):464-469.
    [10]Raghava R,Caddell R M,Gregorys Y Y.The macroscopic yield behaviour of polymers[J].Journal of Materials Science,1973(8):225-232.
    [11]Zhang X A,Zhao Q H,Wang S Q,et al.Characterizing strength and fracture of wood cell wall through uniaxial micro-compression test[J].Composites Part A.Applied Science and Manufacturing,2010,41(5):632-638.
    [12]Ozyhar T,Hering S,Niemz P.Moisture-dependent orthotropic tensioncompression asymmetry of wood[J].Holzforschung,2012,67(4):395-404.
    [13]Stra?e A,Fajdiga G,Pervan S,et al.Hygro-mechanical behavior of thermally treated beech subjected to compression loads[J].Construction and Building Materials,2016,113:28-33.
    [14]刘一星,则元京,师冈淳郎.木材横纹压缩大变形应力-应变关系的定量表征[J].林业科学,1995,31(5):436-442.
    [15]张红为,胡兵,邵卓平.杨木压缩应力-应变关系研究[J].安徽农业大学学报,2010,37(4):665-668.
    [16]Kutnar A,Kamke F A.Transverse compression behavior of Douglas-fir(Pseudotsuga menziesii)in saturated steam environment[J].European Journal of Wood and Wood Products,2013,71(4):443-449.
    [17]Aimene Y E,Nairn J A.Simulation of transverse wood compression using a large-deformation,hyperelastic-plastic material model[J].Wood Science and Technology,2015,49(1):21-39.
    [18]Tabarsa T,Chui Y H.Characterizing microscopic behavior of wood under transverse compression.Part II.Effect of species and loading direction[J].Wood and Fiber Science,2001,33(2):223-232.
    [19]Zhong W Z,Huang X C,Hao Z M,et al.Energy absorption of spruce wood under three kinds of quasi-static compression conditions[J].Advanced Materials Research,2011,250-253:3-9.
    [20]黄广华,陈瑞英.人工林巨尾桉木材密实化结构[J].福建农林大学学报(自然科学版),2012(5):497-501.
    [21]陈瑞英,魏萍,刘景宏.压前含水率对杉木间伐材压缩木性能的影响[J].林产工业,2006,33(1):l0-13.
    [22]余雁,费本华,张波,等.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度[J].北京林业大学学报,2006,28(5):114-118.
    [23]尹江苹.湿热-压缩共同作用对杉木细胞壁结构与性能的影响[D].北京:中国林业科学研究院,2016.
    [24]Bergander A,Salmén L.Cell wall properties and their effects on the mechanical properties of fibres[J].Journal of Materials Science,2002,37(1):151-156.
    [25]Bergander A,Salmén L.Variations in transverse fibre wall properties:Relations between elastic properties and structure[J].Holzforschung,2000,54(6):654-660.
    [26]Muzamal M,Gamstedt E K,Rasmuson A.Modeling wood fiber deformation caused by vapor expansion during steam explosion of wood[J].Wood Science and Technology,2014,48(2):353-372.
    [27]Song K L,Yin Y F,Salmén L.Changes in the properties of wood cell walls during the transformation from sapwood to heartwood[J].Journal of Materials Science,2014,49(4):1734-1742.杂志简介:《中国人造板》杂志,原名《人造板通讯》,由中国林业科学研究院木材工业研究所主办,中国林业科学研究院木材工业研究所信息中心承办,是我国专题报道人造板全方位资讯的杂志。主要报道人造板及其相关行业的质量、技术、市场动态和信息,面向人造板、人造板原辅材料、人造板深加工、地板、木门窗、橱柜、木材加工设备及配件、室内装饰、木制家具、木制品、建材等领域,面向广大企事业单位、营销单位、行政管理部门发行,发行量大,是业内人士优选的刊物。订阅信息:月刊,每月5日出版,大16开彩色印刷,国内外公开发行。全年12期,每期15元,平邮180元/年,挂号邮寄216元/年,快递邮寄360元/年。全国各地邮电局(所)均可办理订阅,邮发代号“2-995”,也可微信订阅或直接与本刊发行部联系订阅。微信订阅请先关注公众号“中国人造板”,然后点击“杂志订阅”进入微店;订阅电话010-6288 8476(或联系QQ 2579324471),联系人张玉萍。广告热线:010-6288 9493/150 1056 5183(陈怡)投稿热线:010-6288 8476(舒文博)邮箱:zyp@cwbp.cn(订阅)chenyi@cwbp.cn(广告)tougao@cwbp.cn(投稿)杂志官网:http://rzbzz.criwi.org.cn
    [28]Yin Y F,Berglund L,Salmén L.Effect of steam treatment on the properties of wood cell walls[J].Biomacromolecules,2011,12(1):194-202.
    [29]Guo J,Yin J P,Zhang Y G,et al.Effects of thermo-hygro-mechanical(THM)treatment on the viscoelasticity of in-situ lignin[J].Holzforschung,2017,71(6):455-460.
    [30]Furuta Y,Nakajima M,Nakanii E,et al.The effects of lignin and hemicelluloses on themal-softing properties of water-swollen wood[J].Mokuzai Gakkaishi,2010,56(3):132-138.
    [31]Kong L L,Zhao Z J,He Z B,et al.Effects of steaming treatment on crystallinity and glass transition temperature of Eucalyptuses grandis×E.urophylla[J].Results in Physics,2017(7):914-919.
    [32]Poletto M,Zattera AJ,Forte MM,et al.Thermal decomposition of wood:influence of wood components and cellulose crystallite size[J].Bioresource Technology,2012,109(1):148-53.
    [33]Lenth C A,Kamke F A.Moisture dependent softening behavior of wood[J].Wood Fiber Science,2001,33(3):492-507.
    [34]Yin J P,Yuan T Q,Lu Y,et al.Effect of compression combined with steam treatment on the porosity,chemical compositon and cellulose crystalline structure of wood cell walls[J].Carbohydrate Polymers,2017,155:163-172.
    [35]Olsson A,Salmén L.Viscoelasticity of in situ lignin as affected by structure:softwood vs.hardwood[M]//Viscoelasticity of biomaterials.Glasser W.ACSsymposium Series No 489,American Chemical Society,1992:133.
    [36]Olsson A,Salmén L.The effect of lignin composition on the viscoelastic properties of wood[J].Nord.Pulp Pap.Res.J,1997,12:140-144.
    [37]?stberg G,Salmén L,Terlecki J.Softening temperature of moist wood measured by differential calorimetry[J].Holzforschung,1990,44(3):223-225.
    [38]赵钟声.木材横纹压缩变形恢复率的变化规律与影响机制[D].哈尔滨:东北林业大学,2003.
    [39]王洁瑛,赵广杰,Takato N,等.热处理过程中杉木压缩木材的材色及红外光谱[J].北京林业大学学报,2001,23(1):59-64.
    [40]孙丽萍,崔永志,刘一星.木材横纹压缩过程中径向、弦向加载差异性分析[J].林业科技,1997(3):38-41.
    [41]Uhmeier A,Morooka T,Norimoto M.Influence of thermal softening and degradation on the Radial compression behavior of wet spruce[J].Holzforschung,1998,52:77-81.
    [42]Irvine G M.The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis[J].Tappi Journal,1984,67(5):118-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700