强噪声激励下C/SiC复合材料壁板动态响应与失效分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic responses and failure analysis of C/SiC composite plates subjected high intensity acoustic loads
  • 作者:吴振强 ; 刘宝瑞 ; 贾洲侠 ; 王英诚 ; 栾新刚 ; 陈博
  • 英文作者:WU Zhenqiang;LIU Baorui;JIA Zhouxia;WANG Yingcheng;LUAN Xingang;CHEN Bo;Science and Technology on Reliability and Environment Engineering Laboratory,Beijing Institute of Structure and Environment Engineering;Science and Technology on Thermostructural Composite Materials Laboratory,Northwestern Polytechnical University;
  • 关键词:高超声速飞行器 ; C/SiC复合材料 ; 平板 ; 噪声载荷 ; 加速度 ; 动态应变 ; 失效模式
  • 英文关键词:hypersonic vehicle;;C/SiC composites;;flat plate;;acoustic loads;;acceleration;;dynamic strains;;failure mode
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:北京强度环境研究所可靠性与环境工程技术重点实验室;西北工业大学超高温复合材料实验室;
  • 出版日期:2018-09-03 16:29
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(11172046;11502024)
  • 语种:中文;
  • 页:FUHE201905021
  • 页数:9
  • CN:05
  • ISSN:11-1801/TB
  • 分类号:198-206
摘要
高超声速飞行器热防护系统和热结构包含多种形式的复合材料薄壁结构,对巡航或再入飞行中的强噪声环境十分敏感和易发生失效破坏,严重威胁着飞行器结构的完整性和可靠性。为考核复合材料薄壁结构的耐噪声性能,基于高声强行波管噪声试验系统,选取厚度为1~3mm的C/SiC复合材料平板作为试验件,试验件四周采用螺栓进行固定安装。通过开展156~165dB噪声激励动态响应试验,获得了不同量级噪声作用下的动态响应变化规律。针对厚度为1mm的试验件开展了失效试验,在168dB噪声作用下,试验件发生了迅速破坏,采用红外无损检测设备对失效后的C/SiC复合材料平板进行检测,采用SEM对断面形貌进行观察,揭示出强噪声激励下的失效模式,可为高温复合材料结构优化设计和耐噪声失效性能评估提供技术支撑。
        Thermal protection systems and hot structures of hypersonic vehicles include many composite plates.These structures are very sensitive to acoustic loads during cruise or re-entry flights and are destroyed easily.It is a vital challenge for the integrity and the durability of hypersonic vehicle plates.The C/SiC composite testing flat plates with thickness from 1 mm to 3 mm were chosen and many acoustic tests were carried out using aprogressive wave tube facility.The four edges of these flat plates were completely fixed using fastening bolts.Responses of acceleration and strain of the C/SiC composite testing plates within 156-165 dB acoustic loads were obtained.The C/SiC composite testing plate with the thickness of 1 mm was destroyed rapidly subjected acoustic load with sound pressure level 168 dB.The failure plate was detected using the infrared nondestructive devices and the fracture surface was observed using SEM,then the failure modes of the testing plate were also achieved.The results are significant to optimum designs and anti-acoustic failure evaluation for high temperature material structures.
引文
[1]BLEVINS R D,BOFILIOS D,HOLEHOUSE I,et al.Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure:AFRL-RB-WP-TR-2009-3139[R].Chula Vista,CA:Goodrich Aerostructures Group,2009.
    [2]BRIAN Z.Predictive capability for hypersonic structural response and life prediction phaseⅡ:Details design of hypersonic cruise vehicle hot-structure:AFRL-RQ-WP-TR-2012-0280[R].Seal Beach,CA:Boeing Company,2012.
    [3]GLASS D.Ceramic matrix composite(CMC)thermal protection system(TPS)and hot structure for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.Dayton:American Institute of Aeronautics and Astronautics,2008.
    [4]张立同.纤维增韧碳化硅陶瓷复合材料-模拟、表征与设计[M].北京:化学工业出版社,2009.ZHANG L T.Fiber-reinforced silicon carbide ceramic composites:Modeling,characterization and design[M].Beijing:Chemical Industry Press,2009(in Chinese).
    [5]姚起航,杨学勤.飞机结构声疲劳设计手册[M].北京:航空工业出版社,1998.YAO Q H,YANG X Q.Sonic fatigue design handbook of aircraft structures[M].Beijing:Aviation Industry Press,1998(in Chinese).
    [6]谭志勇,闵昌万,龙丽平.先进复合材料的结构动力学设计与分析技术探究[J].强度与环境,2011,38(3):24-28.TAN Z Y,MIN C W,LONG L P.The technology of dynamics design and analysis for the structure of advanced composite material[J].Structure&Environment Engineering,2011,38(3):24-28(in Chinese).
    [7]于登云.新型航天飞行器发展对力学学科的挑战[J].科学通讯,2015,60(12):1085-1094.YU D Y.Mechanical challenges in advanced spacecraft development[J].Chinese Science Bulletin,2015,60(12):1085-1094(in Chinese).
    [8]孟光,周徐斌,苗军.航天重大工程中的力学问题[J].力学进展,2016,46(1):267-322.MENG G,ZHOU X B,MIAO J.Mechanical problems in momentous projects of aerospace engineering[J].Advances in Mechanics,2016,46(1):267-322(in Chinese).
    [9]吴振强,任方,张伟,等.飞行器结构热噪声试验的研究进展[J].导弹与航天运载技术,2010(2):24-30.WU Z Q,REN F,ZHANG W,et al.Research advances in thermal-acoustic testing of aerocraft structures[J].Missiles and Space Vehicles,2010(2):24-30(in Chinese).
    [10]赵保平,严超,孟详男,等.大型热环境试验技术的最新进展[J].装备环境工程,2016,13(5):1-9.ZHAO B P,YAN C,MENG X N,et al.Recent development and prospect of large spacecraft thermal environmental test technology[J].Equipment Environmental Engineering,2016,13(5):1-9(in Chinese).
    [11]沙云东,王建,赵奉同,等.高温环境下薄壁结构声疲劳失效验证技术研究[J].装备环境工程,2016,13(5):17-23.SHA Y D,WAND J,ZHAO F T,et al.Acoustic fatigue verification technology of thin-walled structure under high temperature environment[J].Equipment Environmental Engineering,2016,13(5):17-23(in Chinese).
    [12]张卫红,冯秉初,呙道军.噪声试验技术在高超声速巡航飞行器研制中的应用前景[J].强度与环境,2011,38(2):31-34.ZHANG W H,FENG B C,GUO D J.The advanced research on application of acoustic test technology in developing hypersonic cruise missile[J].Structure&Environment Engineering,2011,38(2):31-34(in Chinese).
    [13]BETTS J F.Experimental structural dynamic response of plate specimens due to sonic loads in progressive wave tube:NASA/CR-2001-211045[R].Hamptons:National Aeronautics and Space Administration,2001.
    [14]LEATHERWOOD J D,CLEVENSON S A,POWELL C A,et al.Acoustic testing of high-temperature panels[J].Journal of Aircraft,1992,29(6):1130-1136.
    [15]邵闯,黄文超.飞机典型结构件的声疲劳实验研究[J].实验力学,2009,24(6):519-524.SHAO C,HUANG W C.Experimental study of sonic fatigue failure for typical structure specimens of aircraft[J].Journal of Experimental Mechanics,2009,24(6):519-524(in Chinese).
    [16]郝秉磊,殷小玮,刘小瀛,等.C/SiC陶瓷基复合材料螺栓连接件的振动响应特性及防松性能[J].复合材料学报,2014,31(3):653-650.HAO B L,YIN X W,LIU X Y,et al.Vibration response characteristics and looseness-proof performances of C/SiC ceramic matrix composite bolted fastenings[J].Acta Materiae Compositae Sinica,2014,31(3):653-650(in Chinese).
    [17]吴振强,张伟,孔凡金,等.热噪声复合环境试验装置研制及其能力验证[J].导弹与航天运载技术,2014(5):598-605.WU Z Q,ZHANG W,KONG F J,et al.Research and capability verification of the test apparatus simulating combined thermal and acoustic environment[J].Missiles and Space Vehicles,2014(5):598-605(in Chinese).
    [18]吴振强,张正平,李海波,等.C/SiC壁板热噪声复合环境动态响应试验研究[J].实验力学,2015,30(6):741-748.WU Z Q,ZHANG Z P,LI H B,et al.Experimental investigation on C/SiC plate dynamic response in a thermal and acoustic combined environment[J].Journal of Experimental Mechanics,2015,30(6):741-748(in Chinese).
    [19]沙云东,闻邦椿,屈伸.薄壁板在随机声载荷作用下的振动响应估算谱估算[J].振动与冲击,2007,26(6):63-66.SHA Y D,WEN B C,QU S.Estimation of response power spectrum of panel structure under random acoustic load[J].Journal of Vibration and Shock,2007,26(6):63-66(in Chinese).
    [20]张立同,成来飞.自愈合陶瓷基复合材料制备与应用基础[M].北京:化学工业出版社,2015.ZHANG L T,CHENG L F.Fabrication and application of self-healing ceramic matrix composites[M].Beijing:Chemical Industry Press,2015(in Chinese).
    [21]管国阳,矫贵琼,张增光.2D-C/SiC复合材料的宏观拉压特性和失效模式[J].复合材料学报,2005,22(4):81-85GUAN G Y,JIAO G Q,ZHANG Z G.Uniaxial macro-mechanical property and failure mode of a 2D-woven C/SiC composite[J].Acta Materiae Compositae Sinica,2005,22(4):81-85(in Chinese).
    [22]孙龙生,姚磊江,吕国志,等.二维平纹编织CVI工艺C/SiC复合材料的疲劳行为[J].西北工业大学学报,2007,25(4):478-481.SUN L S,YAO L J,LV G Z,et al.Fatigue behavior of 2Dplain-woven carbon/silicon carbide composite using chemical vapor infiltration(CVI)technique[J].Journal of Northwestern Polytechnical University,2007,25(4):478-481(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700