微藻处理压裂返排液的效果及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect and Influence Factors of Microalgae for Fracturing Flowback Fluid Treatment
  • 作者:李冉 ; 潘杰 ; 张丽 ; 谢娟 ; 杨江 ; 秦文龙
  • 英文作者:LI Ran;PAN Jie;ZHANG Li;XIE Juan;YANG Jiang;QIN Wenlong;College of Petroleum Engineering, Xi'an Shiyou University;Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil &.Gas Reservoirs, Xi 'an Shiyou University;College of Chemistry and Chemical Engineering, Xi'an Shiyou University;
  • 关键词:小球藻 ; 压裂返排液 ; 生物处理 ; 混凝 ; 厌氧
  • 英文关键词:chloride;;fracturing flowback fluid;;biological treatment;;coagulation;;anaerobic
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:西安石油大学石油工程学院;西安石油大学陕西省油气田特种增产技术重点实验室;西安石油大学化学化工学院;
  • 出版日期:2019-02-20 10:58
  • 出版单位:水处理技术
  • 年:2019
  • 期:v.45;No.325
  • 基金:国家自然科学基金项目(51504192);; 陕西省自然科学基础研究计划项目(2016JQ5102);; 陕西省教育厅专项科研计划项目(17JK0616);; 陕西省高校科协青年人才托举计划项目(20160119)
  • 语种:中文;
  • 页:SCLJ201902019
  • 页数:4
  • CN:02
  • ISSN:33-1127/P
  • 分类号:77-80
摘要
针对压裂返排液污染物成分复杂、含量高,对环境污染严重的特点,采用小球藻好氧处理结合聚合氯化铝(PAC)混凝、颗粒污泥厌氧处理压裂返排液结果表明,压裂返排液可生化性差,小球藻直接处理返排液COD去除率仅为5.85%,返排液培养小球藻96 h后藻株进入对数期增殖,最大藻密度为1.19 g/L。混凝处理可以有效去除返排液中有机物污染物,混凝出水培养小球藻72 h后藻株进入对数期增殖,最大藻密度为1.03 g/L,返排液经混凝、小球藻处理后COD去除率为68.63%。颗粒污泥厌氧处理可以进一步去除返排液混凝出水有机污染物,厌氧出水培养小球藻24 h后藻株快速增殖,最大藻密度为0.35 g/L,返排液经混凝、厌氧和小球藻处理后,COD去除率可达92.16%。
        The fracturing flowback fluids contain complex pollutant components with high content, which cause serious environmental pollution. Chlorella aerobic combined with poly aluminium chloride(PAC) coagulation and granular sludge anaerobic were used to treat fracturing flowback fluid. The results showed that, the biodegradability of fracturing flowback fluid was bad, when the fracturing flowback fluid was treated directly by chlorella, COD removal rate was only 5.85%, chlorella turned into logarithmic phase from 96 h, and maximum algal density was 1.19 g/L. The coagulation treatment could remove organic pollutant in fracturing flowback fluid, chlorella in coagulation effluent turned into logarithmic phase from 72 h, and maximum algal density was 1.03 g/L. COD removal rate was 68.63% after coagulation and chlorella treatment. The granular sludge anaerobic treatment could further remove organic pollutant in coagulation treatment effluent. The chlorella proliferates quickly from 24 h, and maximum algal density was 0.35 g/L. COD removal rate could reach 92.16% after coagulation, granular sludge anaerobic and chlorella treatment.
引文
[1]STRINGFELLOW W T,DOMEN J K,CAMARILLO M K,et al.Physical,chemical,and biological characteristics of compounds used in hydraulic fracturing[J].Journal of Hazardous Materials2014,275:37-54.
    [2]HUANG Y H,CHOU S,PERNG M G,et al.Case study on the bioeffluent of petrochemical wastewater by electro-Fenton method[J].Water Science and Technology,1999,39(10):145-149.
    [3]CRISAFULLY R,MILHOME M A L,CAVALCANTE R M,et al Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin[J].Bioresource Technology,2008,99(10):4515-4519.
    [4]DIMOGLO A,AKBULUT H Y,CIHAN F,et al.Petrochemical wastewater treatment by means of clean electrochemical technologies[J]Clean Technologies and Environmental Policy,2004,6(4):288-295.
    [5]宋磊,张晓飞,王毅琳,等.美国页岩气压裂返排液处理技术进展及前景展望[J].环境工程学报,2014,8(11):4721-4725.
    [6]黄璐,陈武,陈泉源.油田常用化学品对含油废水处理效果的影响[J].环境工程学报,2010,4(12):2694-2698.
    [7]XIE B,LIANG S B,TANG Y,et al.Petrochemical wastewater odor treatment by biofiltration[J].Bioresource Technology,2009,100(7):2204-2209.
    [8]MALLICK N.Biotechnological potential of immobilized algae for wastewater N,P and metal removal:a review[J].Biometals,2002,15(4):377-390.
    [9]CHRISTENSON L,SIMS R.Production and harvesting of microalgae for wastewater treatment,biofuels,and bioproducts[J].Biotechnology Advances,2011,29(6):686-702.
    [10]PITTMAN J K,DEAN A P,OSUNDEKO O.The potential of sustainable algal biofuel production using wastewater resources[J].Bioresource Technology,2011,102(1):17-25.
    [11]OLGUIN E J.Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery[J].Biotechnology Advances,2012,30(5):1031-1046.
    [12]章斐,陈秀荣,江子建,等.不同氮磷浓度下2种无毒微藻的生长特性和脱氮除磷效能[J].环境工程学报,2015,9(2):559-566.
    [13]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [14]何焕杰,马雅雅,张淑侠,等.混凝-微电解-催化氧化法处理普光气田试气酸压废液[J].天然气工业,2011,31(5):103-106.
    [15]OU H S,WEI C H,DENG Y,et al.Principal component analysis to assess the efficiency and mechanism for ultraviolet-C/polyaluminum chloride enhanced coagulation of algae-laden water[J].Water Science&Technology Water Supply,2014,14(3):493.
    [16]WU Z,ZHANG X,ZHOU C,et al.A comparative study on the characteristics and coagulation mechanism of PAC-Al13 and PAC-Al30.Rsc Advances,2016,110(6):108369-108374.
    [17]赵立军,滕登用,刘金玲,等.废水厌氧生物处理技术综述与研究进展[J].环境工程学报,2001,2(5):58-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700