含氮消毒副产物卤乙酰胺的水解特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrolysis of Nitrogenous Disinfection By-Product Haloacetamides
  • 作者:邵开利 ; 郭亭验 ; 黄璜
  • 英文作者:SHAO Kaili;GUO Tingyan;HUANG Huang;School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,Sun Yat-Sen University;
  • 关键词:含氮消毒副产物 ; 卤乙酰胺 ; 溴代乙酰胺 ; 水解 ; 稳定性
  • 英文关键词:nitrogenous disinfection by-products;;haloacetamides;;brominated acetamides;;hydrolysis;;stability
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:中山大学环境科学与工程学院广东省环境污染控制与修复技术重点实验室;
  • 出版日期:2019-01-28 10:06
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.256
  • 基金:国家自然科学基金青年科学基金项目(No.51408619);; 广东省环境污染控制与修复技术重点实验室开放基金项目(No.2016K0006)~~
  • 语种:中文;
  • 页:HJKX201905019
  • 页数:7
  • CN:05
  • ISSN:11-1827/X
  • 分类号:163-169
摘要
为探究高毒性含氮消毒副产物HAcAms (卤乙酰胺)的水解特性,选取水中普遍存在的2种溴代HAcAms〔BCAcAm (溴氯乙酰胺)、DBAcAm (二溴乙酰胺)〕与2种氯代HAcAms〔DCAcAm (二氯乙酰胺)、TCAcAm (三氯乙酰胺)〕作为研究对象,研究pH、初始ρ(HAcAms)、温度、氯消毒剂和氯胺消毒剂等因素对HAcAms稳定性的影响.结果表明:①4种HAcAms在pH为5和7时较稳定,在pH为8~10下发生碱性催化水解反应,并且水解速率随pH升高而增加.②相同碱性环境中,4种HAcAms的水解速率大小依次为TCAcAm>DCAcAm>BCAcAm>DBAcAm,并且初始ρ(HAcAms)(30~150μg/L)越小,温度(25~35℃)越高,HAcAms水解速率越大.③中性条件下,4种HAcAms在ρ(NaClO)(NaClO为次氯酸钠)为1~5 mg/L时均迅速氯化分解,并且分解速率随ρ(NaClO)增加而增大,4种HAcAms分解速率的大小规律与其碱性水解速率大小规律一致.④当pH为7时,4种HAcAms在ρ(NH2Cl)(NH2Cl为一氯胺)为0. 5~5 mg/L下较稳定.研究显示,水中HAcAms在高pH、低初始ρ(HAcAms)、高温及氯消毒剂存在的条件下易水解,其中溴代HAcAms比氯代HAcAms更稳定,其在饮用水与再生水中的风险更需要重视.
        To understand the stability of HAcAms(haloacetamides) in water, two brominated species including BCAcAm(bromochloroacetamide) and DBAcAm(dibromoacetamide),and two chlorinated species including DCAcAm(dichloroacetamide) and TCAcAm(trichloroacetamide),which were commonly detected in drinking water and reclaimed water,were selected as targeted HAcAms.The stability of the targeted HAcAms was examined under a variety of conditions including different pH,initial concentrations of HAcAms,temperatures and disinfectant doses including chlorine doses and monochloramine doses. The results indicated that the targeted HAcAms were stable at pH 5 and 7,but all of them underwent alkaline hydrolysis in the pH range of 8 to 10 with hydrolysis rates rising with increasing pH values. Among the 4 HAcAms,the hydrolysis rates followed the order TCAcAm>DCAcAm>BCAcAm>DBAcAm under the same alkaline conditions. Besides,the hydrolysis rates of the HAcAms increased with the decrease of initial HAcAms concentrations in the range of 30 to 150 μg/L and the increase of temperature in the range of 25 to 35 ℃. At neutral condition,the doses of free chlorine in the range of 1 to 5 mg/L caused rapid loss of HAcAms,and the rates of loss accelerated with increasing chlorine dose. This chlorine-assisted reaction followed the trends noted for HAcAm alkaline hydrolysis. At pH 7,the HAcAms were stable when monochloramine concentration was in the range of 0. 5 to 5 mg/L. In conclusion,the 4 HAcAms could undergo hydrolysis at high pH,low initial concentrations of HAcAms,high temperature,and undergo degradation in the presence of chlorine. The brominated HAcAms exhibited higher stability than the chlorinated compounds,thus more attention should be paid to them.
引文
[1] KRASNER S W,WEINBERG H S,RICHARDSON S D,et al.Occurrence of a new generation of disinfection byproducts[J].Environmental Science&Technology,2006,40(23):7175-7185.
    [2] PLEWA M J,MUELLNER M G,RICHARDSON S D,et al.Occurrence,synthesis,and mammalian cell cytotoxicity and genotoxicity of haloacetamides:an emerging class of nitrogenous drinking water disinfection by-products[J]. Environmental Science&Technology,2008,42(3):955-961.
    [3] BOND T,HUANG Jin,TEMPLETON M R,et al. Occurrence and control of nitrogenous disinfection by-products in drinking water:a review[J].Water Research,2011,45(15):4341-4354.
    [4] LE ROUX J,NIHEMAITI M,CROUE J P. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter[J].Water Research,2016,88:371-379.
    [5] CHUANG Y,MCCURRY D L,TUNG H H,et al. Formation pathways and tradeoffs between haloacetamides and haloacetaldehydes during combined chlorination and chloramination of lignin phenols and natural waters[J]. Environmental Science&Technology,2015,49(24):14432-14440.
    [6] LIU Chao,OLIVARES C I,PINTO A J,et al. The control of disinfection byproducts and their precursors in biologically active filtration processes[J].Water Research,2017,124:630-653.
    [7] CHU Wenhai,LI Dongmei,GAO Naiyun,et al. The control of emerging haloacetamide DBP precursors with UV/persulfate treatment[J].Water Research,2015,72:340-348.
    [8] ZENG Teng,PLEWA M J,MITCH W A. N-Nitrosamines and halogenated disinfection byproducts in U.S. full advanced treatment trains for potable reuse[J].Water Research,2016,101:176-186.
    [9] DU Ye,LV Xiaotong,WU Qianyuan,et al.Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination:a review[J].Journal of Environmental Sciences,2017,58:51-63.
    [10] HUANG Huang, WU Qianyuan, HU Hongying, et al.Dichloroacetonitrile and dichloroacetamide can form independently during chlorination and chloramination of drinking waters,model organic matters and wastewater effluents[J].Environmental Science&Technology,2012,46(19):10624-10631.
    [11] HUANG Huang,ZHU Haihui,GAN Wenhui,et al. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen,China[J].Chemosphere,2017,188:257-264.
    [12] CHU Wenhai,Gao Naiyun,DENG Yang,et al. Formation of nitrogenous disinfection by-products from pre-chloramination[J].Chemosphere,2011,85(7):1187-1191.
    [13] HEEB M B,CRIQUET J,ZIMMERMANN-STEFFENS S G,et al.Oxidative treatment of bromide-containing waters:formation of bromine and its reactions with inorganic and organic compounds:a critical review[J].Water Research,2014,48(1):15-42.
    [14] SZCZUKA A,PARKER K M,HARVEY C,et al. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater[J]. Water Research,2017,122:633-644.
    [15] KOSAKA K,OHKUBO K,AKIBA M.Occurrence and formation of haloacetamides from chlorination at water purification plants across Japan[J].Water Research,2016,106:470-476.
    [16] BOND T,TEMPLETON M R,KAMAL N H M,et al. Nitrogenous disinfection byproducts in English drinking water supply systems:occurrence,bromine substitution and correlation analysis[J].Water Research,2015,85:85-94.
    [17] KRISTINAN I,LIEW D,HENDERSON R K,et al.Formation and control of nitrogenous DBPs from western Australian source waters:investigating the impacts of high nitrogen and bromide concentrations[J]. Journal of Environmental Sciences,2017,58:102-115.
    [18] RICHARDSON S,PLEWA M,WANGER E,et al. Occurrence,genotoxicity,and carcinogenicity of regulated and emerging disinfection by-products in drinking water:a review and roadmap for research[J].Mutation Research-Reviews in Mutation Research,2007,636:178-242.
    [19] HUANG Huang,CHEN Boyi,ZHU Ziru. Formation and speciation of haloacetamides and haloacetonitriles for chlorination,chloramination,and chlorination followed by chloramination[J].Chemosphere,2016,166:126-134.
    [20]楚文海,高乃云,邓扬.饮用水新型含氮消毒副产物卤乙酰胺稳定性研究[J].有机化学,2009,29(10):1569-1574.CHU Wenhai,GAO Naiyun,DENG Yang. Stability of newfound nitrogenous disinfection by-products haloacetamides in drinking water[J]. Chinese Journal of Organic Chemistry,2009,29(10):1569-1574.
    [21]理查德A.拉森,埃里克J.韦伯.环境有机化学反应机理[M].北京:机械工业出版社,2017:91-92.
    [22] YU Yun,RECKHOW D A. Kinetic analysis of haloacetonitrile stability in drinking waters[J]. Environmental Science&Technology,2015,49(18):11028-11036.
    [23] GLEZER V, HARRIS B, TAL N, et al. Hydrolysis of haloacetonitriles:linear free energy relationship,kinetics and products[J].Water Research,1999,33(8):1938-1948.
    [24] KOUDJONOU B K,LEBEL G L. Halogenated acetaldehydes:analysis,stability and fate in drinking water[J]. Chemosphere,2006,64:795-802.
    [25] MA Shengcun,GUO Xiaoqi,CHEN Baiyang. Toward better understanding of chloral hydrate stability in water:kinetics,pathways,and influencing factors[J]. Chemosphere,2016,157:18-24.
    [26] OULEGO P,LACA A,DIAZ M.Kinetics and pathways of cyanide degradation at high temperatures and pressures[J]. Environmental Science&Technology,2013,47(3):1542-1549.
    [27] ZHANG Xiaolu,YANG Hongwei,WANG Xiaomao,et al.Formation of disinfection by-products:effect of temperature and kinetic modeling[J].Chemosphere,2013,90(2):634-639.
    [28] ZHANG Xiangru,MINEAR R A. Decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes in drinking water[J].Water Research,2002,36(14):3665-3673.
    [29] HUANG Huang,WU Qianyuan,TANG Xin,et al. Formation of haloacetonitriles and haloacetamides and their precursors during chlorination of secondary effluents[J]. Chemosphere,2016,144:297-303.
    [30]郭晓崎.饮用水消毒副产物三氯乙醛去除性质的研究[D].哈尔滨:哈尔滨工业大学,2014:1-58.
    [31] NA Chongzheng,OLSON T M.Stability of cyanogen chloride in the presence of free chlorine and monochloramine[J]. Environmental Science&Technology,2004,38(22):6037-6043.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700