油藏铁还原微生物的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of Fe (Ⅲ)-reducing microorganisms in petroleum reservoirs
  • 作者:翁雪 ; 佘跃惠 ; 王子琛
  • 英文作者:WENG Xue;SHE Yue-Hui;WANG Zi-Chen;College of Chemistry and Environmental Engineering, Yangtze University;College of Petroleum Engineering, Yangtze University;Hubei Cooperative Innovation Center of Unconventional Oil and Gas;
  • 关键词:油藏 ; 铁还原菌 ; 高温高压 ; 粘土矿物转化 ; 微生物提高原油采收率
  • 英文关键词:Oil reservoir;;Fe(Ⅲ)-reducing bacteria;;High temperature and high pressure;;Clay mineral transformation;;Microbial enhanced oil recovery
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:长江大学化学与环境工程学院;长江大学石油工程学院;非常规油气湖北省协同创新中心;
  • 出版日期:2018-12-13 14:30
  • 出版单位:微生物学通报
  • 年:2019
  • 期:v.46
  • 基金:国家自然科学基金(51634008,51474034);; “十三五”国家科技重大专项(2017ZX05009-004-003)~~
  • 语种:中文;
  • 页:WSWT201903024
  • 页数:9
  • CN:03
  • ISSN:11-1996/Q
  • 分类号:212-220
摘要
地下深部油藏通常为高温、高压以及高盐的极端环境,含有非常丰富的本源嗜热厌氧微生物,按代谢类群可分为发酵细菌、硫酸盐还原菌、产甲烷古菌和铁还原菌。从油田环境已经分离出90株铁还原微生物,如热袍菌目、热厌氧杆菌目、脱铁杆菌目、δ-变形菌纲脱硫单胞菌目、γ-变形菌纲希瓦氏菌属和广古菌门栖热球菌属等,这些菌株生长温度范围为4-85°C,生长盐度范围为0.1%-10.0%NaCl,还未见到文献报道油藏铁还原菌的耐压性研究。在油藏环境中存在微生物、矿物和流体(油/水)三者之间的相互作用,油藏中的粘土矿物能够作为微生物生命活动的载体,也能为微生物代谢作用提供电子受体。本文综述了油藏铁还原菌分离和表征的研究进展,简述了油藏铁还原菌的环境适用性,并展望了铁还原菌在提高原油采收率方面的应用前景。
        Oil reservoirs are often deep subsurface extreme environments with high temperatures,pressures, and salinities. Several physiological and taxonomic groups of thermophilic anaerobic bacteria are present in the oil reservoirs, such as fermentative, methanogenic, sulfate-reducing and Fe(Ⅲ)-reducing microorganisms. A total of 90 strains of Fe(Ⅲ)-reducing bacteria have been isolated from oilfield fluids and identified as the genus Thermotoga, Thermoanaerobacter, Deferribacteres, the order Desulfuromonadales within the class Deltaproteobacteria, the order Shewanella within the class Gammaproteobacteria, and Thermococcus within the Euryarchaeota, in the growth temperature range of4-85 °C and the growth salinity range of 0.1%-10% NaCl. The growth pressure range of Fe(Ⅲ)-reducing microorganisms in oil reservoirs has not been reported yet. There is strong interaction among the microorganisms, minerals and fluids(oil/water) at the actual reservoir conditions. The clay minerals can serve as carriers for microbial life activities and also provide electron acceptors for microbial metabolism.Here, we present the current status of isolation and characterization of Fe(Ⅲ)-reducing bacteria in oil reservoirs, describe the environmental applicability of Fe(Ⅲ)-reducing bacteria, and predict microbial enhanced oil recovery(MEOR) application prospects by using Fe(Ⅲ)-reducing bacteria.
引文
[1]Wang TY,Xiu JL,Huang LX,et al.Microbial enhanced oil recovery model in porous media[J].Acta Petrolei Sinica,2016,37(1):97-105(in Chinese)王天源,修建龙,黄立信.多孔介质微生物提高原油采收率模型[J].石油学报,2016,37(1):97-105
    [2]Yue QY,Song L,Pan Y,et al.The application research status of microbial enhanced oil recovery[J].Applied Chemical Industry,2017,46(3):577-580,585(in Chinese)岳庆友,宋力,潘一,等.微生物驱油技术的应用研究进展[J].应用化工,2017,46(3):577-580,585
    [3]Kryachko Y.Novel approaches to microbial enhancement of oil recovery[J].Journal of Biotechnology,2018,266:118-123
    [4]Starkey RL,Halvorson HO.Studies on the transformations of iron in nature.II.concerning the importance of micro?ganisms in the solution and precipitation of iron[J].Soil Science,1927,24(6):381-402
    [5]Semple KM,Westlake DWS.Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids[J].Canadian Journal of Microbiology,1987,33(5):366-371
    [6]Nazina TN,Ivanova AE,Golubeva OV,et al.Occurrence of sulfate-and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field[J].Microbiology,1995,64(2):203-208
    [7]Greene AC,Patel BKC,Sheehy AJ.Deferribacter thermophilus gen.nov.,sp.nov.,a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir[J].International Journal of Systematic Bacteriology,1997,47(2):505-509
    [8]Slobodkin AI,Jeanthon C,L’Haridon S,et al.Dissimilatory reduction of Fe(III)by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia[J].Current Microbiology,1999,39(2):99-102
    [9]Greene AC,Patel BKC,Yacob S.Geoalkalibacter subterraneus sp.nov.,an anaerobic Fe(III)-and Mn(IV)-reducing bacterium from a petroleum reservoir,and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter[J].International Journal of Systematic and Evolutionary Microbiology,2009,59(4):781-785
    [10]Stucki JW,Komadel P,Wilkinson HT.Microbial reduction of structural iron(III)in smectites[J].Soil Science Society of America Journal,1987,51(6):1663-1665
    [11]Li YL,Vali H,Sears SK,et al.Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium[J].Geochimica et Cosmochimica Acta,2004,68(15):3251-3260
    [12]Liu D,Wang HM,Dong HL,et al.Mineral transformations associated with goethite reduction by Methanosarcina barkeri[J].Chemical Geology,2011,288(1/2):53-60
    [13]Orphan VJ,Goffredi SK,Delong EF,et al.Geochemical influence on diversity and microbial processes in high temperature oil reservoirs[J].Geomicrobiology Journal,2003,20(4):295-311
    [14]Takahata Y,Nishijima M,Hoaki T,et al.Distribution and physiological characteristics of hyperthermophiles in the Kubiki Oil Reservoir in Niigata,Japan[J].Applied and Environmental Microbiology,2000,66(1):73-79
    [15]Cao DY,Wang D,Li J,et al.Gas source analysis of natural gas hydrate of Muri coalfield in Qilian Mountain permafrost,Qinghai Province,China[J].Journal of China Coal Society,2012,37(8):1364-1368(in Chinese)曹代勇,王丹,李靖,等.青海祁连山冻土区木里煤田天然气水合物气源分析[J].煤炭学报,2012,37(8):1364-1368
    [16]Magot M,Ollivier B,Patel BKC.Microbiology of petroleum reservoirs[J].Antonie van Leeuwenhoek,2000,77(2):103-116
    [17]Slobodkin AI,Wiegel J.Fe(III)as an electron acceptor for H2oxidation in thermophilic anaerobic enrichment cultures from geothermal areas[J].Extremophiles,1997,1(2):106-109
    [18]Zhang G,Dong H,Kim J,et al.Microbial reduction of structural Fe3+in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction[J].American Mineralogist,2007,92(8/9):1411-1419
    [19]Warr LN,Schlüter M,Schauer F,et al.Nontronite-enhanced biodegradation of Deepwater Horizon crude oil by Alcanivorax borkumensis[J].Applied Clay Science,2018,158:11-20
    [20]Kim J,Dong HL,Seabaugh J,et al.Role of microbes in the smectite-to-illite reaction[J].Science,2004,303(5659):830-832
    [21]Grassia GS,McLean KM,Glénat P,et al.A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs[J].FEMS Microbiology Ecology,1996,21(1):47-58
    [22]L’Haridon S,Reysenbach AL,Glénat P,et al.Hot subterranean biosphere in a continental oil reservoir[J].Nature,1995,377(6546):223-224
    [23]Stetter KO,Huber R,Bl?chl E,et al.Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs[J].Nature,1993,365(6448):743-745
    [24]Liu D.Mineral transformations associated with structural Fe(III)reduction in clay minerals by different microbial functional groups[D].Wuhan:Doctoral Dissertation of China University of Geosciences,2012(in Chinese)刘邓.不同厌氧微生物功能群对粘土矿物结构Fe(III)的还原作用及其矿物转变[D].武汉:中国地质大学博士学位论文,2012
    [25]Lonergan DJ,Jenter HL,Coates JD,et al.Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria[J].Journal of Bacteriology,1996,178(8):2402-2408
    [26]Zeng X,Shao ZZ.Microbial functional groups and molecular mechanisms for biomineralization in hydrothermal vents[J].Microbiology China,2017,44(4):890-901(in Chinese)曾湘,邵宗泽.深海热液区微生物矿化过程的功能群和分子机制[J].微生物学通报,2017,44(4):890-901
    [27]Lovley DR.Dissimilatory metal reduction[J].Annual Review of Microbiology,1993,47:263-290
    [28]Vargas M,Kashefi K,Blunt-Harris EL,et al.Microbiological evidence for Fe(III)reduction on early Earth[J].Nature,1998,395(6697):65-67
    [29]Liu D,Wang FP,Dong HL,et al.Biological reduction of structural Fe(III)in smectites by a marine bacterium at 0.1 and 20MPa[J].Chemical Geology,2016,438:1-10
    [30]Lovley DR,Chapelle FH.Deep subsurface microbial processes[J].Reviews of Geophysics,1995,33(3):365-381
    [31]Picard A,Daniel I.Pressure as an environmental parameter for microbial life-A review[J].Biophysical Chemistry,2013,183:30-41
    [32]Zhang F,She YH,Chai LJ,et al.Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China[J].Scientific Reports,2012,2:760
    [33]Wang SL,Wu XZ,Hao LH,et al.Mutation effect of ultra high pressure on microbe[J].Acta Microbiologica Sinica,2005,45(6):970-973(in Chinese)王岁楼,吴晓宗,郝莉花,等.(超)高压对微生物的影响及其诱变效应探讨[J].微生物学报,2005,45(6):970-973
    [34]Abe F,Horikoshi K.The biotechnological potential of piezophiles[J].Trends in Biotechnology,2001,19(3):102-108
    [35]Fang JS,Bazylinski DA.Deep-sea geomicrobiology[A]//Michiels C,Bartlett DH,Aertsen A.High-Pressure Microbiology[M].Washington DC:ASM Press,2008:237-264
    [36]Wang L,Nie Y,Song XM,et al.Microbial community in petroleum reservoir and its pressure adaptation mechanisms[J].Microbiology China,2016,43(11):2495-2505(in Chinese)王璐,聂勇,宋新民,等.油藏微生物及其压力适应机制[J].微生物学通报,2016,43(11):2495-2505
    [37]Picard A,Testemale D,Wagenknecht L,et al.Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions[J].Frontiers in Microbiology,2015,5:796
    [38]Myers CR,Nealson KH.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988,240(4857):1319-1321
    [39]Perez-Gonzalez T,Jimenez-Lopez C,Neal AL,et al.Magnetite biomineralization induced by Shewanella oneidensis[J].Geochimica et Cosmochimica Acta,2010,74(3):967-979
    [40]Wang YF.Study effects of salinity and pressure on the reduction rate of iron(III)oxyhydroxides by two dissimilatory iron-reducing bacterias[D].Wuhan:Master’s Thesis of Wuhan Textile University,2016(in Chinese)王雨飞.盐度和压力对两株异化铁还原细菌还原三价铁矿物速率的影响研究[D].武汉:武汉纺织大学硕士学位论文,2016
    [41]Picard A,Testemale D,Hazemann JL,et al.The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction[J].Geochimica et Cosmochimica Acta,2012,88:120-129
    [42]Frankel RB,Bazylinski DA,Schüler D.Biomineralization of magnetic iron minerals in bacteria[J].Supramolecular Science,1998,5(3/4):383-390
    [43]Xiao X,Wang P,Zeng X,et al.Shewanella psychrophila sp.nov.and Shewanella piezotolerans sp.nov.,isolated from west Pacific deep-sea sediment[J].International Journal of Systematic and Evolutionary Microbiology,2007,57(1):60-65
    [44]Wu WF,Pan YX,Wang FP.High hydrostatic pressure effect on deep-sea iron reducing bacteria Shewanella piezotolerans WP3biomineralization[A]//Proceedings of the 28th Annual Conference of Chinese Geophysical Society[C].Beijing:Chinese Geophysical Society,2012(in Chinese)吴文芳,潘永信,王风平.高静水压力下深海铁还原细菌Shewanella piezotolerans WP3的生物矿化研究[A]//中国地球物理学会第二十八届年会论文集[C].北京:中国地球物理学会,2012
    [45]Wu WF,Li B,Hu J,et al.Iron reduction and magnetite biomineralization mediated by a deep-sea iron reducing bacterium Shewanella piezotolerans WP3[J].Journal of Geophysical Research,2011,116(G4):G04034
    [46]Wu WF,Wang FP,Li JH,et al.Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures[J].Geobiology,2013,11(6):593-601
    [47]Jian HH,Li SK,Tang XX,et al.A transcriptome resource for the deep-sea bacterium Shewanella piezotolerans WP3 under cold and high hydrostatic pressure shock stress[J].Marine Genomics,2016,30:87-91
    [48]Zeng X,Zhang Z,Li X,et al.Caloranaerobacter ferrireducens sp.nov.,an anaerobic,thermophilic,iron(III)-reducing bacterium isolated from deep-sea hydrothermal sulfide deposits[J].International Journal of Systematic and Evolutionary Microbiology,2015,65(6):1714-1718
    [49]Li X,Zeng X,Zhang Z,et al.Characteristics of different iron oxides reduction by a thermophilic dissimilatory iron reducing bacterium Caloranaerobacter ferrireducens DY22619T from deep sea[J].Haiyang Xuebao,2016,38(8):82-92(in Chinese)李曦,曾湘,张昭,等.深海嗜热异化铁还原菌Caloranaerobacter ferrireducens DY22619T对不同铁氧化物的铁还原特性[J].海洋学报,2016,38(8):82-92
    [50]Fang JS,Kato C,Runko GM,et al.Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from~1.5 to 2.4 km-deep coal-bearing sediments below the ocean floor[J].Frontiers in Microbiology,2017,8:137
    [51]Lu AH,Yang XX,Wang HR,et al.Method for enhancing crude oil recovery ratio:China,CN103147731A[P].2013-06-12(in Chinese)鲁安怀,杨晓雪,王浩然,等.一种提高原油采收率的方法:中国,CN103147731A[P].2013-06-12
    [52]Liu D,Dong H,Bishop ME,et al.Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium[J].Geobiology,2012,10(2):150-162
    [53]Jaisi DP,Eberl DD,Dong HL,et al.The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction[J].Clays and Clay Minerals,2011,59(1):21-33
    [54]Nazina TN,Shestakova NM,Semenova EM,et al.Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir[J].Frontiers in Microbiology,2017,8:707
    [55]Xie SC,Liu D,Qiu X,et al.Microbial roles equivalent to geological agents of high temperature and pressure in deep Earth[J].Science China Earth Sciences,2016,59(11):2098-2104谢树成,刘邓,邱轩,等.微生物与地质温压的一些等效地质作用[J].中国科学:地球科学,2016,46(8):1087-1094
    [56]Huang WL,Longo JM,Pevear DR.An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer[J].Clays and Clay Minerals,1993,41(2):162-177
    [57]Dong HL,Jaisi DP,Kim J,et al.Microbe-clay mineral interactions[J].American Mineralogist,2009,94(11/12):1505-1519
    [58]Shi L,Thomas CS,Zachara JM,et al.Respiration of metal(hydr)oxides by Shewanella and Geobacter:A key role for multihaem c-type cytochromes[J].Molecular Microbiology,2007,65(1):12-20
    [59]Konhauser KO,Urrutia MM.Bacterial clay authigenesis:Acommon biogeochemical process[J].Chemical Geology,1999,161(4):399-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700