原子力显微技术在纺织材料研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Application of Textile Materials Based on Atomic Force Microscopy
  • 作者:刘雨
  • 英文作者:LIU Yu;National Engineering Laboratory for Modern Silk,College of Textile and Clothing Engineering,Soochow University;Nantong Home Textile Industry Technology Company;
  • 关键词:原子力显微镜 ; 纺织材料 ; 微结构观察 ; 力学测试
  • 英文关键词:atomic force microscope(AFM);;textile;;microstructure observation;;mechanical measurement
  • 中文刊名:SYSY
  • 英文刊名:Research and Exploration in Laboratory
  • 机构:苏州大学纺织与服装工程学院现代丝绸国家工程实验室;南通家纺产业技术研究院有限公司;
  • 出版日期:2018-07-15
  • 出版单位:实验室研究与探索
  • 年:2018
  • 期:v.37;No.269
  • 基金:国家自然科学基金项目(51403146);; 江苏省自然科学基金(BK20161288)
  • 语种:中文;
  • 页:SYSY201807006
  • 页数:6
  • CN:07
  • ISSN:31-1707/T
  • 分类号:23-28
摘要
原子力显微镜(AFM)能够揭示材料表面的微观结构及力学性质,具有制样方便、检测灵敏、结果准确等特点。AFM在纳米材料研究领域有着广泛的应用,但其在纺织材料领域应用的系统研究还相对较少。介绍了AFM的原理及主要特点,探讨了其在纺织材料研究中的应用。利用AFM不仅能观察纤维的表面微结构、测量相关物理学性能及力曲线,并且能够分析纤维与织物的前处理过程、研究医药纺织品组装与降解机,为AFM在纺织材料研究中的应用提供了新思路。
        Atomic force microscope(AFM) technology is frequently used to investigate the microstructure and mechanical properties of material surface at nanometer scale,it takes the advantages of simple-preparation,sensitive detection and result-accurate. Such technology has been widely used in the field of Nano material,however,relatively less used in textile materials. In this paper,the principle and main characteristics of AFM are introduced,also the application in field of textile materials is discussed in detail. Through AFM technology, the microstructure and pretreatment process of textile materials could be observed and analyzed,also the physical properties can be measured.It provides the help for mechanism research of assembly and degradation of biomedical textiles. This study provides a new idea for the research and application of AFM in textile materials.
引文
[1]Vavouraki A I,Putnis C V,Putnis A,et al.A comparative study of calcite dissolution in the presence of aqueous sulphate:Batch and AFM experiments[J].Geochmica Et Cosmochimica Acta,2017,33(1):57-61.
    [2]Pethica J B,Oliver W C.Tip surface interactions in STM and AFM[J].Physica Scripta,1987,19:61-66.
    [3]Li Y,Maynor B W,Liu J.Electrochemical AFM“Dip-Pen”nanolithography[J].J Am Chem Soc,2014,123(9):2105-2106.
    [4]James P J,Antognozzi M,Tamayo J,et al.Interpretation of contrast in tapping mode AFM and shear force microscopy.a study of nafion[J].Langmuir,2015,17(17):349-360.
    [5]Harrison A J,Corti D S,Beaudoin S P.Capillary forces in nanoparticle adhesion:a review of AFM methods[J].Part Sci Technol,2015,33(5):526-538.
    [6]Sch9nherr H,Vancso G J,Huisman B H,et al.An atomic force microscopy study on self-assembled monolayers of resorcin[4]areneadsorbates on Au(111)[J].Langmuir,2017,13(6):1567-1570.
    [7]Wang R,Kido M.Condensation and evaporation behaviors of microwater droplets on SUS304 steel observed using the ac noncontact mode of AFM[J].Materials Letters,2003,57(16-17):2360-2365.
    [8]Edwards D,Faulk J K,Sanders A,et al.Optimizing 1-μsresolution single-molecule force spectroscopy on a commercial AFM[J].Nano Letters,2015,15(10):7091-7098.
    [9]潘丹梅,王力新,蔡东东,等.原子力显微镜几种成像模式在聚合物太阳能电池材料表征中的应用[J].高分子通报,2014(10):92-97.
    [10]Rief M,Gautel M,Oesterhelt F,et al.Reversible unfolding of individual titin immunoglobulin domains by AFM[J].Science,1997,276:1109-1112.
    [11]Yan Li,Benjamin W Maynor,Jie Liu.Electrochemical AFM“DipPen”nanolithography[J].J Am Chem Soc,2001,123(9):2105-2106.
    [12]Boneschanscher M P,Lit J V D,Sun Z,et al.Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes[J].Acs Nano,2012,6(11):10216-10221.
    [13]Tanem B S,Kamfjord T,Augestad M,et al.Sample preparation and AFM analysis of heterophase polypropylene systems[J].Polymer,2003,44(15):4283-4291.
    [14]Francis L W,Gonzalez D,Ryder T,et al.Optimized sample preparation for high-resolution AFM characterization of fixed human cells[J].Journal of Microscopy,2010,240(2):111-121.
    [15]Li J,Cassell A M,Dai H.Carbon nanotubes as AFM tips:measuring DNA molecules at the liquid/solid interface[J].Surface&Interface Analysis,2015,28(1):8-11.
    [16]张阳阳,吴子婴,周旸,等.家蚕茧和蓖麻蚕茧不同茧层的茧丝形态结构分析[J].蚕业科学,2013,39(6):1126-1130.
    [17]Kim Y,Kim T,Choi H M.Qualitative identification of cashmere and yak fibers by protein fingerprint analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J].Ind Eng Chem Res,2013,52(16):5563-5571.
    [18]Tonetti C,Vineis C,Aluigi A,et al.Immunological method for the identification of animal hair fibres[J].Textile Research Journal,2012,82(8):766-772.
    [19]傅宏俊,于淼,刘建中,等.基于AFM的羊毛与羊绒纤维的表面形貌研究[J].天津工业大学学报,2014(2):28-31.
    [20]陈红,田根林,费本华.利用AFM技术研究毛竹纤维初生壁微纤丝[J].林业科学,2014,50(4):90-94.
    [21]崔丽丽.PPTA纤维表面改性及其性能研究[D].上海:东华大学,2016.
    [22]Su M,Gu A,Liang G,et al.The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimidecomposites[J].Appl Surf Sci,2011,257(8):3158-3167.
    [23]戚东涛,吕霖,李厚补,等.接枝硅烷偶联剂对Kevlar纤维表面性能的影响[J].合成纤维工业,2013,36(6):14-17.
    [24]苏华,杨晨,薛一萌,等.纺丝溶液的挤出对聚丙烯腈初生纤维表面形态的影响[J].北京化工大学学报(自然科学版),2012,39(4):52-57.
    [25]庄伟,徐丽慧,徐壁,等.改性Si O2水溶胶在棉织物超疏水整理中的应用[J].纺织学报,2011,32(9):89-94.
    [26]Adam C.Using AFM force distance curves to study the glass-torubber transition of amorphous polymers and their elastic plastic properties as a function of temperature[J].Macromolecules,2017,38(5):1874-1881.
    [27]原波,王珺,韩平畴,等.基于AFM的聚己酸内酯纳米纤维的弯曲力学性能[J].高分子材料科学与工程,2009,25(5):49-52.
    [28]孙亮,王珺,韩平畴.基于AFM的PCL纳米纤维动力学实验和尺寸效应研究[J].工程力学,2009,26(8):228-232.
    [29]刘小兰,肖刚,霍冀川,等.用原子力显微镜测试碳纤维微区相对硬度[J].化工新型材料,2015(6):195-196.
    [30]郑燕梅,高磊,杨文斌,等.不同填料对纤维素丝力学及热稳定性能的影响[J].东北林业大学学报,2017,45(2):57-60.
    [31]陈红,吴智慧,费本华.利用原子力显微镜表征竹纤维细胞壁横截面结构[J].南京林业大学学报(自然科学版),2016,40(2):139-143.
    [32]崔莉,范雪荣,陈坚,等.微生物谷氨酰胺转胺酶对羊毛蛋白纤维改性作用的性能表[J].过程工程学报,2009,9(2):344-349.
    [33]万爱兰.基于形尺度的抗起毛起球机制及其评价方法[D].上海:东华大学,2013.
    [34]张春明.常压等离子体处理涤纶织物的颜料喷墨印花性能研究[D].南京:江南大学,2010
    [35]高秋瑾,彭程程,王鸿博,等.丝织物基纳米结构银膜形貌及抗菌性能研究[J].化工新型材料,2010,38(5):75-77.
    [36]孟灵灵,黄新民,魏取福.氧等离子体预处理对涤纶基纳米铜膜性能影响[J].化工新型材料,2013,41(8):70-71.
    [37]Wang C,Wang M.Electrospun multicomponent and multifunctional nanofibrous bone tissue engineering scaffolds[J].J Mater Chem B Mater Biol Med,2017,5:1388-1399.
    [38]Greving I,Cai M,Vollrath F,et al.Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy[J].Biomacromolecules,2012,13(3):676-682.
    [39]杜其其格,候嘉华,张学强,等.利用液相原位原子力显微镜对一种beta肽在疏水表面的自组装研究[J].基因组学与应用生物学,2015,34(3):655-657.
    [40]徐芃,李伟,周华从,等.用AFM研究静电纺丝负载药物的缓释机制[J].过程工程学报,2012,12(1):119-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700