纳米多孔铜的结构调控与表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural control and characterization of nanoporous Cu
  • 作者:王凯 ; 柳宁 ; 王志峰 ; 习卫 ; 罗俊
  • 英文作者:WANG Kai;LIU Ning;WANG Zhi-feng;XI Wei;LUO Jun;Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology;
  • 关键词:纳米多孔铜 ; 去合金化 ; 二级孔结构 ; 准二维多孔片
  • 英文关键词:nanoporous Cu;;dealloy;;two-level porous structure;;quasi-2D porous sheets
  • 中文刊名:DZXV
  • 英文刊名:Journal of Chinese Electron Microscopy Society
  • 机构:天津理工大学材料学院新能源材料与低碳技术研究院天津市先进多孔功能材料重点实验室电镜中心;
  • 出版日期:2018-10-15
  • 出版单位:电子显微学报
  • 年:2018
  • 期:v.37;No.199
  • 基金:天津市科委自然科学基金一般项目(No.15JCYBJC52600)
  • 语种:中文;
  • 页:DZXV201805010
  • 页数:7
  • CN:05
  • ISSN:11-2295/TN
  • 分类号:83-89
摘要
纳米多孔铜(NPC)作为一种新型功能纳米材料,具有高比表面积、高通透性、高导电导热性和低密度等特点,有望在催化、分离和能源等领域得到应用。然而,目前还缺少对NPC结构调控的有效方法,多数方法制备出的NPC为韧带尺寸>100 nm的大孔材料,不利于它们在催化、分离等方面的应用。本文为进一步降低NPC的韧带尺寸,通过调控Al-Cu合金前驱体的相结构、并对其实施去合金化,最终可控地制备出最小特征尺寸为20 nm的二级孔和准二维片状两种NPC。其中,准二维片状NPC的去合金化制备是首次实现,为开发性能优异的准二维纳米多孔金属材料提供了技术思路。
        As a new type of functional nanomaterial, nanoporous Cu(NPC) possesses high specific surface areas, high permeabilities, high electrical and thermal conductivities, low densities, etc. Thus, it is expected to be applicable in the fields of catalysis, separation and energy. However, effective methods to control NPC structures are still lacking at present, and NPC samples synthesized by most existing methods are usually macroporous materials with ligament sizes larger than 100 nm, which is not beneficial to their applications in catalysis and separation. In order to further reduce the ligament size of NPC, here we have successfully synthesized two types of NPC samples with the minimum feature size of 20 nm, two-level porous NPC and quasi-2 D lamellate NPC, by controlling the phase structure of Al-Cu alloy precursors and dealloying them. The realization of the dealloying preparation of the quasi-2 D lamellate NPC is the first, which provides a technical strategy for the development of quasi-2 D nanoporous metal materials with outstanding properties.
引文
[1] WANG R Y, WANG C, CAI W B, et al. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures [J]. Advanced Materials,2010,22(16): 1845-1848.
    [2] WITTSTOCK A,ZIELASEK V,BIENER J,et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature [J]. Science,2010,327(5963): 319-322.
    [3] BIENER J, WITTSTOCK A, ZEPEDA-RUIZ L A, et al. Surface-chemistry-driven actuation in nanoporous gold [J]. Nature Materials,2008,8(1): 47-51.
    [4] CHEN L Y,YU J S,FUJITA T,et al. Nanoporous copper with tunable nanoporosity for SERS applications [J]. Advanced Functional Materials,2010,19(8): 1221-1226.
    [5] JOO S H,CHOI S J,KWA K J,et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature,2001,412(6843): 169-172.
    [6] BIENER J,HODGE A M,HAYES J R,et al. Size effects on the mechanical behavior of nanoporous Au [J]. Nano Letters,2006, 6(10): 2379-2382.
    [7] CHEN A Y, WANG J W, WANG Y, et al. Effects of pore size and residual Ag on electrocatalytic properties of nanoporous gold films prepared by pulse electrochemical dealloying [J]. Electrochimica Acta,2015,153: 552-558.
    [8] KUHL K P, CAVE E R, ABRAM D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces [J]. Energy & Environmental Science,2012,5(5): 7050-7059.
    [9] XUAN Y, QINLIU S U, LONGHUANG K E, et al. Effective nanoporous copper for electrocatalytic reduction of carbon dioxide in ionic liquid [J]. Functional Materials Letters,2010,3(3): 181-183.
    [10] XU C, WANG L, WANG R, et al. Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance [J]. Advanced Materials, 2010,21(22): 2165-2169.
    [11] MAO R,LIANG S,WANG X,et al. Effect of preparation conditions on morphology and thermal stability of nanoporous copper [J]. Corrosion Science,2012,60(3): 231-237.
    [12] HAYES J R, HODGE A M, BIENEr J, et al. Monolithic nanoporous copper by dealloying Mn-Cu [J]. Journal of Materials Research,2011,21(10): 2611-2616.
    [13] 谭秀兰,李恺,刘颖,等. 去合金化工艺对纳米多孔铜孔结构的影响[J]. 稀有金属材料与工程,2010,39(11):2011-2014.
    [14] 周琦,周全,张兵,等. Al-Cu合金成分对去合金化制备纳米多孔铜的影响[J]. 材料热处理学报,2013,34(3): 35-39.
    [15] 李梅, 周永志, 耿浩然. 纳米多孔铜带的制备及表征[J]. 济南大学学报(自然科学版),2012,26(2): 111-114.
    [16] 谭秀兰, 唐永建, 刘颖, 等. 去合金化制备纳米多孔铜[J]. 强激光与粒子束,2009,21(1): 63-66.
    [17] YAN Q, YU J, CAI Z, et al. Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science [M]. Wiley-VCH Verlag GmbH & Co, 2012.
    [18] 丁轶. 纳米多孔金属:一种新型能源纳米材料[J]. 山东大学学报(理学版),2011,46(10): 121-133.
    [19] 习卫,孙威,韩广达. 热处理条件下变形结构与长周期堆垛结构复合强化镁合金[J]. 电子显微学报,2015,34(4): 317-321.
    [20] 韩广达,孙威,习卫,等. Mg-Y-Nd-Zn镁合金冲击变形结构特征的电子显微研究[J]. 电子显微学报,2014,33(4): 313-317.
    [21] 冯哲圣, 张睿, 陈金菊, 等. 多孔电极材料表面微孔显微形貌数字图像分析研究[J]. 电子显微学报,2012,31(2): 142-148.
    [22] 李东玮. 纳米多孔金属材料在气相催化方面的应用[D]. 济南:山东大学, 2014.
    [23] 唐浩. 二维金属纳米材料的制备及性能研究[D]. 北京:中国地质大学, 2016.
    [24] LIU H, TANG H, FANG M, et al. 2D metals by repeated size reduction [J]. Advanced Materials,2016,28(37): 8170-8176.
    [25] MüLLER K, ENACHE M, STHR M. Confinement properties of 2D porous molecular networks on metal surfaces [J]. Journal of Physics: Condensed Matter,2016,28(15): 153003.
    [26] 谢裕兴, 孙振亚, 李涵, 等. 石英基多层纳米TiO2-FeOOH复合材料的制备和显微结构的表征[J]. 电子显微学报, 2017, 36(3): 207-213.
    [27] 闫星旭, 方芳, 罗俊, 等. 氧化铁纳米颗粒和多孔碳纳米纤维复合物的制备和显微结构表征[J]. 电子显微学报, 2015, 34(5): 363-366. * Corresponding author

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700