ANAMMOX菌铁自养反硝化工艺的稳定性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability of ZVI-dependent Autotrophic Denitrification by ANAMMOX Bacteria
  • 作者:张文静 ; 黄勇 ; 毕贞 ; 胡羽婷 ; 董石语
  • 英文作者:ZHANG Wen-jing;HUANG Yong;BI Zhen;HU Yu-ting;DONG Shi-yu;National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology;School of Environment Science and Engineering,Suzhou University of Science and Technology;Institute of Environmental Biotechnology,Suzhou University of Science and Technology;
  • 关键词:厌氧氨氧化(ANAMMOX) ; 硝酸盐 ; 零价铁(Fe0) ; 自养反硝化 ; 钝化
  • 英文关键词:anaerobic ammonia oxidation(ANAMMOX);;nitrate;;zero-valent iron(Fe0);;autotrophic denitrification;;passivation
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:城市生活污水资源化利用技术国家地方联合工程实验室;苏州科技大学环境科学与工程学院;苏州科技大学环境生物技术研究所;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金青年科学基金项目(21607110);; 城市生活污水资源化利用技术国家地方联合工程实验室(苏州科技大学)开放课题项目(2018KF02)
  • 语种:中文;
  • 页:HJKZ201907028
  • 页数:7
  • CN:07
  • ISSN:11-1895/X
  • 分类号:243-249
摘要
在非严格厌氧的连续流反应器中,通过调节进水pH、外加一定浓度的Fe~(2+)以及定期更换新鲜铁粉这3种运行方式探讨维持厌氧氨氧化(ANAMMOX)菌利用零价铁去除硝酸盐反应体系长期稳定运行的适宜条件.结果表明,随着反应进行、受零价铁表面钝化的影响,该体系硝酸盐去除率逐渐下降,反应器难以持续运行.在一定范围内降低进水pH(5~7),或者额外投加一定量的Fe~(2+)对改善该反应体系的稳定性效果不显著.通过定期更换新鲜铁粉的方式,可以有效提高硝酸盐去除率、增强反应器稳定性.相比对照组可稳定运行7 d,实验组可至少稳定运行60 d,硝酸盐平均去除率提高22. 23%.因此,采取适宜措施保证体系内有足够具有活性的零价铁、消除零价铁钝化的不利影响,是ANAMMOX菌利用零价铁去除硝酸盐反应体系高效、稳定运行的关键.
        Fe0-dependent autotrophic denitrification mediated by anaerobic ammonia oxidation( ANAMMOX) bacteria was carried out in continuous flow reactors under non-strict anaerobic conditions. Three strategies,including adjusting the influent p H,adding Fe~(2+),and regular renewal with fresh iron powder,were used to investigate the appropriate conditions to maintain the long-term stability of this process. The results showed that the nitrate removal efficiency declined due to Fe0 passivation over time,and this ultimately led to the reaction becoming unsustainable. Neither reducing the influent p H( within the p H range 5-7) nor adding a quantity of Fe~(2+)had an obvious effects on the sustainability of this process. Instead,the nitrate removal efficiency and the sustainability of the reactor was enhanced significantly by regular renewal with fresh Fe0 powder. Compared with the control group( with a 7-day stable operation),the experimental setup was run steadily for at least 60 days,and the average nitrate removal efficiency was increased by 22. 23%.Consequently,maintaining an adequate amount of activated Fe0 and eliminating the adverse effects of Fe0 passivation are vital for the sustainable operation of Fe0-dependent autotrophic denitrification as mediated by ANAMMOX bacteria.
引文
[1] Liu H B,Chen Z H,Guan Y N,et al. Role and application of iron in water treatment for nitrogen removal:a review[J].Chemosphere,2018,204:51-62.
    [2]张宁博.铁基质自养生物反硝化工艺条件研究[D].苏州:苏州科技大学,2017.Zhang N B. Reasearch on the conditions of iron matrix autotrophic biological denitrification process[D]. Suzhou:Suzhou University of Science and Technology,2017.
    [3]张宁博,李祥,黄勇,等.零价铁自养反硝化过程活性污泥矿化及解决措施[J].环境科学,2017,38(9):3793-3800.Zhang N B, Li X, Huang Y, et al. Activated sludge mineralization and solutions in the process of zero-valent iron autotrophic denitrification[J]. Environmental Science,2017,38(9):3793-3800.
    [4] Lu Y S,Yang X X,Wu Z L,et al. A novel control strategy for N2O formation by adjusting Ehin nitrite/Fe(II-III)carbonate green rust system[J]. Chemical Engineering Journal,2016,304:579-586.
    [5] Ren Y,Yang J H,Li J,et al. Strengthening the reactivity of Fe0/(Fe/Cu)by premagnetization:implications for nitrate reduction rate and selectivity[J]. Chemical Engineering Journal,2017,330:813-822.
    [6] Liu Y,Zhang B G,Tian C X,et al. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal[J]. Environmental Technology,2016,37(8):1008-1017.
    [7] Zhang L Y,Sun H H,Zhang X X,et al. High diversity of potential nitrate-reducing Fe(Ⅱ)-oxidizing bacteria enriched from activated sludge[J]. Applied Microbiology and Biotechnology,2018,102(11):4975-4985.
    [8] Zhang M, Zheng P, Li W, et al. Performance of nitratedependent anaerobic ferrous oxidizing(NAFO)process:a novel prospective technology for autotrophic denitrification[J].Bioresource Technology,2015,179:543-548.
    [9] Zhang M,Zhangzhu G C,Wen S X,et al. Chemolithotrophic denitrification by nitrate-dependent anaerobic iron oxidizing(NAIO)process:insights into the evaluation of seeding sludge[J]. Chemical Engineering Journal,2018,345:345-352.
    [10] Zhang X X,Li A,Szewzyk U,et al. Improvement of biological nitrogen removal with nitrate-dependent Fe(Ⅱ)oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment[J]. Bioresource Technology,2016,219:624-631.
    [11] Oshiki M,Ishii S,Yoshida K,et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation(Anammox)bacteria[J]. Applied and Environmental Microbiology,2013,79(13):4087-4093.
    [12]周健.厌氧氧化微生物在零价铁还原硝酸盐体系中的作用[D].苏州:苏州科技大学,2016.Zhou J. The functions of Anammox sludge in the nitrate reducing zero valent-iron oxidation reaction[D]. Suzhou:Suzhou University of Science and Technology,2016.
    [13]周健,黄勇,袁怡,等. ANAMMOX菌利用零价铁转化氨和硝酸盐实验[J].环境科学,2015,36(12):4546-4552.Zhou J, Huang Y, Yuan Y, et al. Simultaneous biotransformation of Ammonium and nitrate via zero-valent iron on anaerobic conditions[J]. Environmental Science,2015,36(12):4546-4552.
    [14] Kang D,Lin Q J,Xu D D,et al. Color characterization of Anammox granular sludge:Chromogenic substance, microbial succession and state indication[J]. Science of the Total Environment,2018,642:1320-1327.
    [15] Li B H,Pan X L,Zhang D Y,et al. Anaerobic nitrate reduction with oxidation of Fe(Ⅱ)by Citrobacter freundii strain PXL1-a potential candidate for simultaneous removal of As and nitrate from groundwater[J]. Ecological Engineering,2015,77:196-201.
    [16] Li Y F,Long X X,Chong Y X,et al. Characterization of the cell-Fe mineral aggregate from nitrogen removal employing ferrous and its adsorption features to heavy metal[J]. Journal of Cleaner Production,2017,156:538-548.
    [17] Wang R,Zheng P,Zhang M,et al. Bioaugmentation of nitratedependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition:a promising way for promotion of chemoautotrophic denitrification[J]. Bioresource Technology,2015,197:410-415.
    [18] Peng C,Sundman A,Bryce C,et al. Oxidation of Fe(Ⅱ)-organic matter complexes in the presence of the mixotrophic nitrate-reducing Fe(Ⅱ)-oxidizing bacterium Acidovorax sp.BoFeN1[J]. Environmental Science&Technology,2018,52(10):5753-5763.
    [19]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [20]陈方敏,金润,袁砚,等.温度和pH值对铁盐型氨氧化过程氮素转化的影响[J].环境科学,2018,39(9):4289-4293.Chen F M,Jin R,Yuan Y,et al. Effect of temperature and pH on nitrogen conversion in Feammox process[J]. Environmental Science,2018,39(9):4289-4293.
    [21] Zhang Y P,Douglas G B,Pu L,et al. Zero-valent ironfacilitated reduction of nitrate:chemical kinetics and reaction pathways[J]. Science of the Total Environment,2017,598:1140-1150.
    [22] Sun Y K,Li J X,Huang T L,et al. The influences of iron characteristics,operating conditions and solution chemistry on contaminants removal by zero-valent iron:a review[J]. Water Research,2016,100:277-295.
    [23] Han L C,Yang L,Wang H B,et al. Sustaining reactivity of Fe0for nitrate reduction via electron transfer between dissolved Fe2+and surface iron oxides[J]. Journal of Hazardous Materials,2016,308:208-215.
    [24] Li Y Y,Fu F L,Ding Z C,et al. Removal of nitrate from water by acid-washed zero-valent iron/ferrous ion/hydrogen peroxide:influencing factors and reaction mechanism[J]. Water Science&Technology,2018,77(2):523-533.
    [25] Xu C Z,Wang X M,An Y,et al. Potential electron donor for nanoiron supported hydrogenotrophic denitrification:H2gas,Fe0, ferrous oxides, Fe2+(aq), or Fe2+(ad)[J].Chemosphere,2018,202:644-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700