橡胶履带轮驱动齿应力建模分析及仿真验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling Analysis and Simulation Verification for Drive Tooth Stress of Rubber Track Wheel
  • 作者:赵子涵 ; 穆希辉 ; 杜峰坡 ; 郭建华
  • 英文作者:Zhao Zihan;Mu Xihui;Du Fengpo;Guo Jianhua;Department of Ammunition Engineering,Army Engineering University;Troops 32181 of PLA;School of Mechanical and Electronic Engineering,Qiqihar University;
  • 关键词:橡胶履带轮 ; 应力分析 ; 复变函数 ; 优化算法
  • 英文关键词:Rubber track wheel;;Stress analysis;;Complex function;;Optimization algorithm
  • 中文刊名:JXCD
  • 英文刊名:Journal of Mechanical Transmission
  • 机构:陆军工程大学弹药工程系;中国人民解放军第32181部队;齐齐哈尔大学机电学院;
  • 出版日期:2019-06-15
  • 出版单位:机械传动
  • 年:2019
  • 期:v.43;No.270
  • 语种:中文;
  • 页:JXCD201906014
  • 页数:5
  • CN:06
  • ISSN:41-1129/TH
  • 分类号:76-80
摘要
橡胶履带轮一般依靠橡胶履带的驱动齿和驱动轮的驱动销啮合传递动力,当驱动齿受到过大载荷或载荷冲击时容易受到破坏,因此,针对驱动齿应力分布进行了数学建模和计算分析。首先,根据橡胶履带轮结构参数和传动原理建立驱动齿齿形方程,应用改进Powell算法确定映射参数,结果表明,采用该方法得到的映射齿形映射精度为0. 12%,有效提高了映射精度;然后,基于复变函数法建立了驱动齿应力变形计算数学模型,分析了不同啮合位置下驱动齿应力分布规律;最后,以计算工况为边界条件,利用Abaqus对分析结果进行仿真验证,结果证明,仿真结果与计算数据最大误差约11. 76%,该数学模型能够较好地应用于驱动齿应力分析。该计算仿真结果可为驱动齿的结构内部优化和局部胶料改进提供理论依据。
        The rubber track wheel generally transmits power by the engagement of the driving teeth of the rubber track and the driving pin of the driving wheel. The driving teeth are likely to be destroyed when they are subjected to excessive load or load impact. The mathematical model and calculation analysis for the driving tooth stress distribution are carried out. Firstly,based on structure parameters and transmission principle,the drive tooth profile equation is established and determining mapping parameters by the improved Powell algorithm. The optimization results show that the accuracy of the mapping tooth profile obtained by this method is 0.12%,which effectively improves the mapping accuracy. Secondly,based on the complex function method,the mathematical model for stress and deformation is established,and the stress distribution laws under different meshing positions are analyzed. Finally,the calculation conditions are set as boundary conditions,and the analysis results are verified by using Abaqus software. The simulation results show that the maximum error between the simulation data and the calculation data is about 11.76%,so the mathematical model can be applied to the analysis of the driving tooth stress. This calculation results can provide theoretical basis for structural optimization of driving teeth and improvement of local rubber materials.
引文
[1]赵子涵,穆希辉,郭浩亮,等.橡胶履带轮静态接地压力测试与建模[J].农业工程学报,2018(3):72-79.
    [2]吕凯.重载可更换式橡胶履带轮设计及理论研究[D].石家庄:军械工程学院,2014:12-14.
    [3] FELDMANN T B. Vehicle track:EP 2502807[P]. 2012-09-26.
    [4] MATSUO S,UCHIDA S,SUGIHARA S. Coreless crawler track and rubber projections therefore:US 7740326[P]. 2010-06-22.
    [5] WELLMAN R A. Vehicle track:US 8567876[P]. 2013-10-29.
    [6] FELDMANN T B,PETERSON P J,KATHERINE L,et al. Endless track belt:EP 1792811[P]. 2007-06-07.
    [7] GAGNE L,LUSSIER A. Endless track for industrial or agricultural vehicles:US 6974196[P]. 2005-12-13.
    [8]吕凯,穆希辉,杜峰坡,等.重载三角橡胶履带轮设计关键问题综述[J].装甲兵工程学院学报,2016(1):29-38.
    [9]郭浩亮.三角橡胶履带轮式全地形车转向力学特性理论与试验研究[D].石家庄:军械工程学院,2016:115-118.
    [10]侯军强,胡志军.销齿传动中销齿轮齿形设计[J].机械传动,2013,37(5):67-69.
    [11] RICHARD M J,PARE D,CARDOU A. Computer implementation of an optimal conformal mapping for gear tooth stress analysis[J].Journal of Mechanical Design,1989,111(2):297-305.
    [12]郭建华.新齿廓人字齿同步带及其传动性能研究[D].哈尔滨:哈尔滨工业大学,2014:24-26.
    [13]姚军.重载齿轮单齿啮合危险区域接触应力分布研究[J].机械传动,2017,41(12):133-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700