船舶气泡减阻研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Research on Air Bubble Drag Reduction on Ships
  • 作者:吴浩 ; 吴卫国 ; 陈克强
  • 英文作者:WU Hao;WU Weiguo;CHEN Keqiang;School of Transportation, Wuhan University of Technology;Key Laboratory of High Performance Ship Technology, Wuhan University of Technology;
  • 关键词:气体润滑减阻 ; 气泡减阻 ; 气泡发生方式 ; 实船应用
  • 英文关键词:air lubrication drag reduction;;bubble drag reduction;;bubble formation method application to full-scale ships
  • 中文刊名:ZGZC
  • 英文刊名:Shipbuilding of China
  • 机构:武汉理工大学交通学院;高性能舰船重点实验室;
  • 出版日期:2019-03-30
  • 出版单位:中国造船
  • 年:2019
  • 期:v.60;No.229
  • 语种:中文;
  • 页:ZGZC201901021
  • 页数:16
  • CN:01
  • ISSN:31-1497/U
  • 分类号:218-233
摘要
船体表面气体润滑减阻技术在过去近二十年中取得了长足的进步,尤其是实船应用方面。论文全面地回顾了国内外气体润滑减阻研究的历史与现状,将气体润滑减阻技术划分为气泡减阻和气层减阻,重点介绍了气泡减阻的机理、气泡发生方式、气泡减阻理论研究和试验研究。在气泡减阻的实船应用方面,结合国内外成功案例进行分析,提出了我国发展气泡减阻技术需要进一步研究的问题。
        Air lubrication drag reduction technology on ship hull surface, especially its application to the full-scale ships has been made great progress in the past 20 years. In this paper, history and current situation of research on air lubrication drag reduction at home and abroad is reviewed comprehensively. The technology of air lubrication can be divided into air bubble drag reduction technology and air layer drag reduction technology.The mechanism of air bubble drag reduction, bubble formation method, corresponding theoretical and experimental researches are introduced. Successful cases in bubble drag reduction are analyzed, and several issues for further research in this field in China are put forward.
引文
[1]董文才,郭日修.气幕减阻研究进展[J].船舶力学,1998,2(5):73-78.
    [2]TESAR V.Mechanism of fluidic microbubble generation,Part1:growth by multiple conjuctions[J].Chemical Engineering Science,2014,116:843-848.
    [3]MURAIA Y,FUKUDAB H,OISHIA Y,et al.Skin friction reduction by large air bubbles in a horizontal channel flow[J].International Journal of Multiphase Flow,2007,33(2):147-163.
    [4]ELBING B R,WINKEL E S,LAY K A,et al.Bubble-induced skin friction drag reduction and the abrupt transition to air-layer drag reduction[J].Journal of Fluid Mechanics,2008(612):201-236.
    [5]董文才,郭日修.平板气幕减阻试验研究[J].中国造船,1998,39(S1):100-106.
    [6]王虹斌,张文光.舰艇气幕降噪系统与设计思想[J].舰船科学技术,1990(2):22-28.
    [7]GOKCAY S,INSEL M,ODABASI A Y.Revisiting artificial air cavity concept for high speed craft[J].Ocean Engineering,2004(31):253-267.
    [8]LAY K A,YAKUSHIJI R,MAKIHARJU S A,et al.Partial cavity drag reduction at high Reynolds numbers[J].Journal of Ship Research,2010(54):109-119.
    [9]SKUDARNOV P V,LIN C X.Density ratio and turbulence intensity effects in microbubble drag reduction phenomenon[J].2006:17-22.
    [10]SKUDARNOV P V,LIN C X.Drag reduction by gas injection into turbulent boundary layer:Density ratio effect[J].International Journal of Heat and Fluid Flow,2006,27(3):436-444.
    [11]MARIE J L.Simple analytical formulation for microbubble drag reduction[J].Physico Chemical Hydrodynamics,1987,8(2):213-220.
    [12]LVOV V S,POMYALOV A,PROCACCIA I,et al.Drag reduction by microbubble in turbulent flows:the limit of minute bubbles[J].Phys.Rev.Lett.94,174502,2005.
    [13]JANSSEN L J J,SILLEN C W M P,BARENDRECHT E,et al.Bubble behaviour during oxygen and hydrogen evolution at transparent electrodes in koh solution[J].Electrochimacta,1984,29(5):633-642.
    [14]TAKAHITO T,AKIRA K,MASAHIKO M,et al.Experimental study on scale effect of drag reduction by microbubbles using very large flat plate ships[J].J.Kansa Soc.N.A.Japan,2003(239):11-20.
    [15]TAKAHITO T,AKIRA K,SHIGEKI N,et al.Mechanisms and scale effects of skin friction reduction by microbubbles[J].J.Kansa Soc.N.A.Japan,2003(239):1-9.
    [16]SHEN X,CECCIO S L,PERLIN M.Influence of bubble size on microbubble drag reduction[J].Exp.Fluids,2006,41(3):415-424.
    [17]KATO H,MIURA K,YAMAGUCHI H,et al.Experimental study on microbubble ejection method for frictional drag reduction[J].Inter.Mar.Sci.Technol.,1998,3(1):22-29.
    [18]MENG J C S,UHLMAN J S.Microbubble formation and splitting in a turbulent boundary layer for turbulent reduction[C]//Proc.Int.Symp.Seawater Drag Reduct.,Newport,Rhode Island,1998:341-55.
    [19]KITAGAWA A,HISHIDA K,KODAMA Y.Two phased turbulence structure in a microbbble channel flow[C]//Proc.of5th Symp.on Smart Control of Turbulence,Tokyo 2004.
    [20]MADAVAN N K,DEUTSCH S,MERKLE C L.Numerical investigation into the mechanisms of microbubble drag reduction[J].J.Fluids Eng.,1985,107(3),70-77.
    [21]FERRANTE A,ELGOBASHI S.On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles[J].Inter.Fluid Mech.,2004,503(3):45-55.
    [22]Mc CORMICK M E,BHATTACHARYYA R.Drag reduction of a submersible hull by electrolysis[J].Naval Engineers Journal,1973,85(2):11-16.
    [23]徐一丹,庞明军,费腾,等.电解法产生微气泡的实验研究[J].实验室科学,2015,18(6):17-21.
    [24]TAKAHASH T,KAKUGAWA A,NAGAYA S,et al.Mechanisms and scale effect of skin friction reduction by microbubble[C]//2nd Symp.,On Smart Control,2001:1-9.
    [25]KODAMA Y,KAKUGAWA A,TAKAHASHI T,et al.Drag reduction of ships by microbubbles[R].Tokyo:National Maritime Research Institute of Japan,2000.
    [26]董文才,郭日修,朱凤荣,等.平板湍流边界层内气泡流流动实验研究[J].海军工程大学学报,2001,13(3):34-37.
    [27]CECCIO S L.Friction drag reduction of external flows with bubble and gas injection[J].Annu.Rev.Fluid Mech.,2010(42):183-203.
    [28]SANDERS W C,WINKEL E S,DOWLING D R,et al.Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer[J].Journal of Fluid Mechanics.2006(552):353-380.
    [29]KUMAGAI I,NAKAMURA N,MURAI Y,et al A new power-saving device for air bubble generation-hydrofoil air pump for ship drag reduction[C]//International Conference on Ship Drag Reduction Smooth-Ships,Istanbul,Turkey,May 2010.
    [30]KUMAGAI I,TAKAHASHI Y,MURAI Y.Power-saving device for air bubble generation using a hydrofoil to reduce ship drag theory,experiments,and application to ships[J].Ocean Engineering,2015,95:183-194.
    [31]DEUTSCH S,CASTANO J.Microbubble skin friction reduction on an axisymmetric body[J].Physics of Fluids,1986,29(11):3590-3597.
    [32]CLARK H,DEUTSCH S.Microbubble skin friction reduction on an axisymmetric body under the influence of applied axial pressure gradients[J].Phys.Fluids A 3:29,1991:48-54.
    [33]董文才,周晨,张军.回转体气层减阻降噪模型试验研究[J].海军工程大学学报,2011,23(3):5-9.
    [34]黄磊,彭雪明,王生捷,等.微孔阵列式绕回转体气泡减阻实验研究[J].兵工学报,2017,38(2):313-318.
    [35]黄磊,王生捷,彭雪明,等.绕流线型回转体通气两相流动的非定常特性[J].哈尔滨工业大学学报,2017,49(7):178-182.
    [36]MADAVAN N K,DEUTCH S,MERKLE C L.Reduction of turbulent skin friction by microbubbles[J].Physics of Fluids,1984(2):356-363.
    [37]DEUTSCH S,MERKLE C L.A comparison of shear stress fluctuation statistics between microbubble modified and polymer modified turbulent flow[J].Physics of Fluids,1989:1360-1362.
    [38]MERKLE C L,DEUTSCH S.Drag reduction in liquid boundary layers by gas injection[J].Prog.Astronaut.Aeronaut,1992(123):351-412.
    [39]MORIGUCHI Y,KATO H.Influence of microbubble diameter and distribution on frictional resistance reduction[J].Marine Sci.Tech.,2002(7):79-85.
    [40]KAWAMURA T,KAKUGAWA A,KODAMA Y,et al.Controlling the size of microbubbles for drag reduction[J].2000.
    [41]SAKODA M,MAEDA M,HINATSU M,et al.An effective method of air injectin for skin friction reduction[J].The Japan Society of Naval Architects and Ocean Engineers,2006(G3-15):289-290.
    [42]MIURA K,FUKUDA H,OISHI Y,et al.Skin friction by large air bubbles in a horizontal channel flow[J].International Journal of Multiphase Flow,2007(33):147-163.
    [43]MAKINO M,KODAMA Y,HORI T,et al.Effect of surface curvature on skin friction reduction by air bubble[J].The Japan Society of Naval Architects and Ocean Engineers,2008(G1-11):157-160.
    [44]TIAN Y,SUEOKA H.Study on air bubble-induced drag reduction method for a curved-shape body[J].The Japan Society of Naval Architects and Ocean Engineers.
    [45]KODAMA Y,KAKUGAWA A,TAKAHASHI T,et al.Experimental study on microbubbles and their applicability to ships for skin friction reduction[J].International Journal of Heat and Fluid Flow,2000(21):582-588.
    [46]KAWASHIMA,MAKINO.An experiment of the bubble injection method for fictional drag reduction using 50m flate with end-plates[J].The Japan Society of Naval Architects and Ocean Engineers,2006(G3-14):285-288.
    [47]KAWASHIMA,MAKINO.An experiment of 2-step air jection for micro-bubble dag reduction using a 50m flate plate[J].The Japan Society of Naval Architects and Ocean Engineers,2006(G8-8):147-150.
    [48]KODAMA,MAKINO.22m flate experiment on the speed dependence of skin friction reduction by air lubrication[J].The Japan Society of Naval Architects and Ocean Engineers,2007(G1-3):63-66.
    [49]ELBING B R,SOLOMON M J,PERLIN M,et al.Flow-induced degradation of drag-reducing polymer solutions within a high Reynolds number turbulent boundary layer[J].Journal of Fluid Mechanics,2011(670):337-364.
    [50]ELBING B R.Skin-friction drag reduction within turbulent flow[D].Michigan:University of Michigan,2009.
    [51]MAKIHARJU S A,PERLIN M,CECCIO S L.On the energy economics of air lubrication drag reduction[J].International Journal of Naval Architecture and Ocean Engineering,2012(4):412-422.
    [52]WINKEL E S.High Reynolds number flat plate turbulent boundary layer measurements and skin friction drag reduction with gas or polymer injection[D].Michigan:University of Michigan,2007.
    [53]JAGDISH B N,BRANDON T Z X,KWEE T J,et al.Experimental study of air layer sustainability for frictional drag reduction[J].Journal of Ship Research,2014(58):30-42.
    [54]TSAI Jingfa,CHEN Chichuan.Boundary layer mixture model for a microbubble drag reduction technique[J].Mechanical Engineering,2011:1-9.
    [55]董文才.滑行艇及平板气层减阻的研究[D].武汉:海军工程大学,2003.
    [56]吴浩,董文才,欧勇鹏.平板喷气流场特性及气流量分配策略试验研究[J].哈尔滨工程大学学报,2016,37(9):1220-1226.
    [57]吴浩.大型平板变水深气层减阻试验技术研究[C]//中国造船工程学会船舶力学学术委员会2015年船舶水动力学学术会议论文集,中国造船工程学会船舶力学学术委员会,2015:6.
    [58]黄红波,何术龙,高丽瑾,等.大型平板在高雷诺数下喷气减阻试验研究[J].中国造船,2018,59(1):1-15.
    [59]CORNEL T,SERGE T,FRANSVAN W.Project energy-saving air-lubricated ship(PELS)[C]//2nd International Symposium on Seawater Drag Reduction,Busan,Korea,May 2005.
    [60]THILL C.Insights into project energy-saving air-lubricated ships(PELS)[C]//In Proceedings of the Motorship Marine Propulsion Conference,Bilbao Expedition Centre,Spain,January 2005:205-215.
    [61]BJ?RN A,MICHAEL L.Model tests with air lubrication[C]//International Conference on Ship Drag Reduction Smooth-Ships,Istanbul,Turkey,May 2010.
    [62]ZVERKHOVSKYI O,DELFOSD R,WESTERWEEL J.Experimental study on frictional drag reduction by air injection in horizontal water pipe flow[C]//International Conference on Ship Drag Reduction Smooth-Ships,Istanbul,Turkey,May2010.
    [63]TAYLAN M.An overview effect of roughness and coatings on ship resistance[C]//International Conference on Ship Drag Reduction Smooth-Ships,Istanbul,Turkey,May 2010.
    [64]LEE Inwon,HO Hwanchun,BOIKO A V,et al.Design parameter optimization of compliant coating for drag reduction[C]//International Conference on Ship Drag Reduction Smooth-Ships,Istanbul,Turkey,May 2010.
    [65]INSEL M,GOKCAY S.Flow analysis of an air injection through discrete air lubrication[C]//International Conference on Ship Drag Reduction Smooth-Ships,Istanbul,Turkey,May 2010.
    [66]KAZUHIRO F,JUNICHIRO J.Frictional drag reduction with air lubricant over a super-water-repellent surface[J].Journal of Marine Science and Technology,2000(5):123-130.
    [67]TOKIHIRO K,YUKIHIKO O,YOSHIKAZU K,et al.A study of air lubrication method to reduce frictional resistance of ship-experimental investigation tanker form model ship and estimation of full scale ship performance[J].J.Kansa Soc.N.A.Japan,2003(239):45-53.
    [68]KAWAITA K,TAKANO S,KODAN Y,et al.Experimental investigation of the behavior of injected air on the ship bottom and its influence on propeller[J].J.Kansa Soc.N.A.Japan,2010(12):43-50.
    [69]LATORRE R,MILLER A,PHILIPS R.Micro-bubble resistance reduction on a model SES catamaran[J].Journal of Ocean Engineering,2003(30):2297-2309.
    [70]SUNARYO Y G.Micro-bubble effect of resistance reduction on a high speed vessel model[C]//Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering(OMAE2007),California,USA,June 2007.
    [71]SUNARYO Y G,JAMALUDDIN A.Micro-bubble drag reduction on a high speed vessel model[J].Journal of Marine Science and Application,2012(11):301-304.
    [72]SAYYAADI H,NEMATOLLAHI M.Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships an experimental approach[J].Scientia Iranica B,2013,20(3):535-541.
    [73]M?KIHARJU S A,CECCIO S L.On multi-point gas injection to form an air layer for frictional drag reduction[J].Ocean Engineering,2018,147:206-214.
    [74]陈克强,张郑.不同航态及附体对气泡稳定性的影响研究[J].船海工程,2010(3):1-3.
    [75]王家楣,郑晓伟,姜曼松.船舶吃水对微气泡减阻影响的水池试验研究[J],船舶工程,2004,2(6):9-12.
    [76]李百齐,高丽瑾,何术龙.船舶通气气泡减阻相似律的研究[J].中国造船,2016,57(3):19-25.
    [77]JIN K C,CHAO T H,GEORGES L.Design trade off analysis for high performance ship hull air plenums[C]//2nd International Symposium on Seawater Drag Reduction,May 2005.
    [78]JIN K C,CHAO T H,GEORGES L.Numerical studies on the hydrodynamic performance and the startup stability of high speed ship hulls with air plenums and air tunnels[C]//Ninth International Conference on Fast Sea Transportation FAST2007,Shanghai,China,September 2007:476-484.
    [79]JIN K C,GEORGES L C.Numerical study on the behavior of air layers used for drag reduction[C]//28th Symposium on Naval Hydrodynamics Pasadena,California,September 2010.
    [80]KANAI A,MIYATA H.Direct numerical simulation of wall turbulent flows with microbubbles[J].International Journal For Numerical Methods In Fluids,2001,35:593-615.
    [81]KIM D,MOIN P.Direct numerical study of air layer drag reduction phenomenon over a backward-facing step[R].California:Center for Turbulence Research Annual Research Briefs,2010:351-363.
    [82]KUNZ R F,GIBELING H J,MAXEY M R,et al.Validation of two-fluid eulerian CFD modeling for microbubble drag reduction across a wide range of Reynolds numbers[J].Journal of Fluids Engineering,2007(129):66-79.
    [83]李齐垚.深V船气层减阻及气层对推进性能影响的研究[D].武汉:海军工程大学,2011.
    [84]蔡红玲.高速气泡船流场数值模拟[D].武汉:武汉理工大学,2008.
    [85]唐桂林,倪其军,王丽艳,等.高速气泡艇阻力数值模拟及气泡减阻效果分析[J]船舶力学,2014,18(8):882-887.
    [86]吴浩,欧勇鹏.平板喷气粘性流场数值计算方法研究[J].舰船科学技术,2016,38(15):47-51.
    [87]吴浩,董文才,欧勇鹏.船舶气层减阻多相流数值模拟方法适配性研究[J].海军工程大学学报,2016,28(3):70-75.
    [88]KAWAMURA T,KODAMA Y.Numerical simulation method to resolve interactions between bubbles and turbulence[J].International Journal of Heat and Fluid Flow,2002(23):627-638.
    [89]MURAKAMI A,KAWAMURA T,HINATSU M.Numerical simulation of flow around a full scale ship equipped with bubble generators[J].The Japan Society of Naval Architects and Ocean Engineers,2008(G1-10):153-156.
    [90]HOANG C,YASUYUKI T,YUGO S.A consider on drag reduction by air lubrication using integral type boundary layer computation[J].The Japan Society of Naval Architects and Ocean Engineers,2011(6):59-65.
    [91]KAWABUCHI M,KAWAKITA C,MIZOKAMI S.CFD predictions of bubbly flow around an energy-saving ship with mitsubishi air lubrication system[J].Mitsubishi Heavy Industries Technical Review,2011(48):53-57.
    [92]陈少峰,高丽瑾,恽秋琴,等.基于EEDI的气层减阻技术评价方法研究[J].中国造船,2018,59(2):1-8.
    [93]KODAMA Y,KAKUGAWA A,TAKAHASHI T,et al.A full scale experiment on micro bubbles for skin friction reduction using SEIUN-MARU,Part 1:The preparatory study[J].Journal of the Society of Naval Architects of Japan,2002,192(3):1-14.
    [94]NAGAMATSU T,KODAMA Y,et al.A full-scale experiment on micro-bubbles for skin friction reduction using SEIUN-MARU,Part 2:The full-scale experiment[J].Journal of the Society of Naval Architects of Japan,2002,192(3):15-28.
    [95]TODA Y,SUZUKI T,YUDA N,et al.Development of shear stress sensor for full scale experiment[J].The Kansai Society of Naval Architects,2004(242):17-24.
    [96]KAWASHIMA H,KODAMA Y,et al.A research project on application of air bubble injection to a full scale ship for drag reduction[C]//5th Joint ASME/JSME Fluids Engineering Conference,2007.
    [97]KAWASHIMA H,HINATSU M,et al.Effectiveness of air injection methods as an energy-saving device for ships[J].Journal of the Society of Naval Architects of Japan,2007(OS3-3):7 9-82.
    [98]KODAMA Y,TAKAHASHI M,MAKINO T.Practical application of microbubbles to ships-large scale model experiments and a new full scale experiment[J].Journal of the Society of Naval Architects of Japan,2009,201(1):15-28.
    [99]OHTA S,KODAMA Y,et al.Boundary layer measurement of a vessel sailing over the sea[C]//6th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering.
    [100]HINATSU M,KODAMA Y,et al.A full-scale air lubrication experiment using a large cement carrier for energy savig(preparation)[J].Journal of the Society of Naval Architects of Japan,2008(G1-12):161-162.
    [101]KODAMA Y,HINATSU M,et al.A full-scale air lubrication experiment using a large cement carrier for energy savig(result and analysis)[J].Journal of the Society of Naval Architects of Japan,2008(G1-12):163-166.
    [102]HOANG C L,TODA Y,SANADA Y.Full scale experiment for frictional resistance reduction using air lubrication method[C]//The International Society of Offshore and Polar Engineers(ISOPE),2009.
    [103]MIZOKAMI S,KAWAKITA C.et al.Development of air lubrication system and verification by the full scale ship test[J].Journal of the Society of Naval Architects of Japan,2010(12):69-77.
    [104]MIZOKAMI S,KAWAKITA C.et al.Experimental study of air lubrication method and verification of effects on actual hull by means[J].Mitsubishi Heavy Industries Technical Review,2010(3):41-47.
    [105]MIZOKAMI S.Development and full-scale verification tests of air lubrication systems[J].Shipbuilding and Ocean Development Headquarters,2012:11-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700