利用CCD和后向散射激光雷达精确探测近地面气溶胶消光系数廓线
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precise detection of near ground aerosol extinction coefficient profile based on CCD and backscattering lidar
  • 作者:陶宗明 ; 施奇兵 ; 谢晨波 ; 刘东 ; 张帅
  • 英文作者:Tao Zongming;Shi Qibing;Xie Chenbo;Liu Dong;Zhang Shuai;Section of Physics T&R, Department of Basic Sciences, PLA Army Academy of Artillery and Air Defense;Hefei GuangBo Quantum Science and Technology Limited Company;Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;
  • 关键词:大气光学 ; 大气散射 ; 激光雷达 ; 消光系数
  • 英文关键词:atmospheric optics;;atmospheric scattering;;lidar;;extinction coefficient
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:陆军炮兵防空兵学院基础部物理教研室;合肥光博量子科技有限公司;中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(41475025)
  • 语种:中文;
  • 页:HWYJ2019S1007
  • 页数:7
  • CN:S1
  • ISSN:12-1261/TN
  • 分类号:49-55
摘要
大气气溶胶主要分布在边界层内,是大气污染的主要来源,精确探测其在空间的分布(特别是近地面层),具有重要的应用价值。后向散射激光雷达是探测大气气溶胶消光系数廓线的有力工具,但由于盲区和过渡区的存在,后向散射激光雷达在近距离处探测不到信号或信号较弱。把CCD探测与后向散射激光雷达(包括米散射和拉曼散射)联合在一起,就可以克服上述困难,同时通过增加拉曼通道,实现了大气气溶胶消光后向散射系数比(又称激光雷达比)的精确测量。为了验证CCD探测结果的正确性,对CCD不同位置距离间的探测结果进行了比对、CCD镜头不同焦距间的探测结果进行了比对,约在1.2 km高度以下,两者气溶胶消光系数的相对偏差都小于3%,表明两台CCD的探测结果一致性很好。探测个例表明近地面的气溶胶消光系数在空间上随高度分布是不均匀的;在时间方面有时随时间增加而增加、有时随时间增加而减少。
        Atmospheric aerosol, a main pollutant source, mainly exists in planetary boundary layer, and the precise detection of its vertical distribution, especially in the near ground, has an important application value. Backscattering lidar is a powerful tool for aerosol extinction coefficient profile detection, but no signals or only weak signals could be received in near distance because of the blind zones and transition regions. The above problems were resolved by combining CCD detection with backscattering lidar, and the aerosol extinction to backscattering coefficient(lidar ratio) was retrieved accurately with the combined measurement of Raman scattering channel. In order to validate CCD detection, two different CCD lidars with different CCD position distance and focal length were designed respectively for comparison. The relative difference of aerosol extinction coefficients from two CCD lidars was less than 3% under about1.2 km height, which indicates that the detection results are in good agreement. Case study shows that aerosol extinction coefficient near the ground is inhomogeneous with height, and sometimes increases with time and sometimes decreases.
引文
[1]Shi Guangyu,Wang Biao,Zhang Hua,et al.The radiative and climatic effects of atmospheric aerosols[J].Chinese Journal of Atmospheric Sciences,2008,32(4):826-840.(in Chinese)
    [2]Shen Shaohua.The radiative heating characteristics in the cloudy and aerosol-laden atmospheres[J].Chinese Journal of Atmospheric Sciences,1991,15(6):89-98.(in Chinese)
    [3]Di Huige,Hou Xiaolong,Zhao Hu,et al.Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar[J].Acta Physica Sinica,2014,63(24):244206.(in Chinese)
    [4]Deng Pan,Zhang Tianshu,Chen Wei,et al.Estimating noise scale factor and SNR of atmospheric lidar[J].Infrared and Laser Engineering,2016,45(S1):S130003.(in Chinese)
    [5]Tao Zongming,Ma Xiaomin,Liu Dong,et al.The statistical distribution of PM2.5 mass concentration profiles at west suburb of Hefei city in 2014[J].Acta Optica Sinica,2016,36(6):0601001.(in Chinese)
    [6]Wang Shaolin,Xie Pinhua,Hu Shunxing,et al.Measurement of atmospheric boundary layer pollutants by mobile lidar in Beijing[J].Chinese Journal of Environmental Science,2008,29(3):562-568.(in Chinese)
    [7]Winker D M,Pelon J,McCormick M P.The CALIPSOmission:Spaceborne lidar for observation of aerosol and cloud[C]//SPIE,2003,4893:1-11.
    [8]Ma Yingying,Gong Wei,Zhu Zhongmin.Aerosol optical characteristics in South east China determined using spaceborne lidar[J].Journal of Remote Sensing,2009,13(4):707-714.
    [9]Zhao Ming,Xie Chenbo,Zhong Zhiqing,et al.High spectral resolution lidar for measuring atmospheric transmission[J].Infrared and Laser Engineering,2016,45(S1):S130002.(in Chinese)
    [10]Bernes J E,Parikh Sharma N C,Kaplan T B.Atmospheric aerosol profiling with a bistatic imaging lidar system[J].Applied Optics,2007,46(15):2922-2929.
    [11]Meng Xiangqian,Hu Shunxing,Wang Zhenzhu,et al.Vertical distribution of aerosol extinction coefficient detection in boundary layer using CCD lidar[J].Acta Optica Sinica,2013,33(8):0801003.(in Chinese)
    [12]Tao Z,Liu D,Wang Z,et al.Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar[J].Optics Express,2014,22(1):1127-1134.
    [13]Ma Xiaomin,Tao Zongming,Zhang Lulu,et al.Ground layer aerosol detection technology during daytime Based on side-scattering Lidar[J].Acta Optica Sinica,2018,38(4):0401005.(in Chinese)
    [14]Bian Yuxuan,Zhao Chunshen,Xu Wanyun,et al.Method to retrieve the nocturnal aerosol optical depth with a CCD laser aerosol detective system[J].Optics Letters,2017,43(22):4607-4610.
    [15]Tao Zongming,Shan Huihui,Zhang Hui,et al.Development of lidar system based on one wavelength emission and five channel receiver[J].Infrared and Laser Engineering,2017,46(10):1030002.(in Chinese)
    [16]Wang Shaolin,Cao Kaifa,Hu Shunxing,et al.Analysis and determination of lidar geometrical factor[J].Laser Technology,2008,32(2):147-150.(in Chinese)
    [17]Wang Z,Tao Z,Liu D,et al.New experimental method for lidar overlap factor using a CCD side-scatter technique[J].Optics Letters,2015,40(8):1749-1952.
    [18]Hu Shunxing,Wang Xiaobin,Wu Yonghua,et al.Geometric form factor determination with Raman backscattering signals[J].Optics Letters,2005,30(14):1879-1881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700